def __init__(self,ptclfiles,ns,ptcls,nc,euler,basisn,verbose): """ptclfiles is a list of 2 (even/odd) particle stacks. ns is the number of particles in each of ptcfiles. ptcls is a list of lists containing [eo,ptcl#,Transform]""" # sys.stderr=file("task.err","a") data={"particles1":["cache",ptclfiles[0],(0,ns[0])],"particles2":["cache",ptclfiles[1],(0,ns[1])]} JSTask.__init__(self,"ClassSplit",data,{},"") self.options={"particles":ptcls,"classnum":nc,"euler":euler,"basisn":basisn,"verbose":verbose}
def __init__(self, volume, sym, comp, xform): data = {"volume": volume} JSTask.__init__(self, "CmpTilt", data, {}, "") self.sym = sym self.cmp = comp self.xform = xform
def __init__(self, image, options, angle, outimage): data={"image":image} JSTask.__init__(self,"TomoPreproc2d",data,{},"") self.classoptions={"options":options, "angle":angle,"outimage":outimage }
def __init__(self,image,options,ptclnum,outname): #def __init__(self,options,ptclnum,outname): data={"image":image} JSTask.__init__(self,"Preproc3d",data,{},"") self.classoptions={"options":options,"ptclnum":ptclnum,"outname":outname}
def __init__(self, ptclfile=None, ptcln=0, orts=[], tryid=0, strucfac=None, niter=5, sym="c1", mask2=None, randorient=False, automaskexpand=-1, verbose=0): data = { "images": ["cache", ptclfile, (0, ptcln)], "strucfac": strucfac, "orts": orts, "mask2": mask2 } JSTask.__init__( self, "InitMdl", data, { "tryid": tryid, "iter": niter, "sym": sym, "randorient": randorient, "automaskexpand": automaskexpand, "verbose": verbose }, "")
def __init__(self,ptclfiles,ns,ptcls,nc,euler,mask,usebasis,nbasis,novarimax,verbose): """ptclfiles is a list of 2 (even/odd) particle stacks. ns is the number of particles in each of ptcfiles. ptcls is a list of lists containing [eo,ptcl#,Transform]""" # sys.stderr=file("task.err","a") data={"particles1":["cache",ptclfiles[0],(0,ns[0])],"particles2":["cache",ptclfiles[1],(0,ns[1])]} JSTask.__init__(self,"ClassSplit",data,{},"") self.options={"particles":ptcls,"classnum":nc,"euler":euler,"usebasis":usebasis,"novarimax":novarimax,"nbasis":nbasis,"mask":mask,"verbose":verbose}
def __init__(self, options, imgfile, imgindx, outf): JSTask.__init__(self, "TomoBoxer3d", {}, "") self.classoptions = { "options": options, "imgfile": imgfile, "imgindx": imgindx, "outf": outf }
def __init__(self,imagefile,imagenums,usefilt=None,ref=None,niter=1,normproc=("normalize.edgemean",{}),prefilt=0,align=("rotate_translate_flip",{}), aligncmp=("ccc",{}),ralign=None,raligncmp=None,averager=("mean",{}),scmp=("ccc",{}),keep=1.5,keepsig=1,automask=0,saveali=0,setsfref=0,verbose=0,n=0,center="xform.center"): if usefilt==None : usefilt=imagefile self.center=center data={"images":["cache",imagefile,imagenums],"usefilt":["cache",usefilt,imagenums]} if ref!=None : data["ref"]=["cache",ref,n] JSTask.__init__(self,"ClassAv",data,{},"") self.options={"niter":niter, "normproc":normproc, "prefilt":prefilt, "align":align, "aligncmp":aligncmp, "ralign":ralign,"raligncmp":raligncmp,"averager":averager,"scmp":scmp,"keep":keep,"keepsig":keepsig, "automask":automask,"saveali":saveali,"setsfref":setsfref,"verbose":verbose,"n":n}
def __init__(self, options, xsize, ysize, y, projection_operator, tiltangles, nimgs): JSTask.__init__(self, "TVRecon", '', {}, "") self.classoptions = { "options": options, "xsize": xsize, "ysize": ysize, "y": y, "projection_operator": projection_operator, "tiltangles": tiltangles, "nimgs": nimgs }
def __init__(self, command="e2project3d.py", data=None, options=None): JSTask.__init__(self, command, data, options) # data has these keys: # input - which is the name of the threed model - a Task-style cache # eulers - a list of Transforms with which to generate projections # indices - indices that correspond to the ordering, has to be the same length as eulers. Returned to calling routine - use to write output in order. Not sure about this. # options has these keys # projector - [string,dict] convention self.projections = {} # key will be index, value will be projection
def __init__(self,imagefile,imagenums,usefilt=None,ref=None,focused=None,niter=1,normproc=("normalize.edgemean",{}),prefilt=0,align=("rotate_translate_flip",{}), aligncmp=("ccc",{}),ralign=None,raligncmp=None,averager=("mean",{}),scmp=("ccc",{}),keep=1.5,keepsig=1,automask=0,saveali=0,setsfref=0,verbose=0,n=0,center="xform.center"): if usefilt==None : usefilt=imagefile self.center=center data={"images":["cache",imagefile,imagenums],"usefilt":["cache",usefilt,imagenums]} if ref!=None : data["ref"]=["cache",ref,n] if focused!=None : data["focused"]=["cache",focused,n] JSTask.__init__(self,"ClassAv",data,{},"") self.options={"niter":niter, "normproc":normproc, "prefilt":prefilt, "align":align, "aligncmp":aligncmp, "ralign":ralign,"raligncmp":raligncmp,"averager":averager,"scmp":scmp,"keep":keep,"keepsig":keepsig, "automask":automask,"saveali":saveali,"setsfref":setsfref,"verbose":verbose,"n":n}
def __init__(self, ptclfiles, ns, ptcls, nc, euler, verbose): """ptclfiles is a list of 2 (even/odd) particle stacks. ns is the number of particles in each of ptcfiles. ptcls is a list of lists containing [eo,ptcl#,Transform]""" data = { "particles1": ["cache", ptclfiles[0], (0, ns[0])], "particles2": ["cache", ptclfiles[1], (0, ns[1])] } JSTask.__init__(self, "ClassSplit", data, {}, "") self.options = { "particles": ptcls, "classnum": nc, "euler": euler, "verbose": verbose }
def __init__(self,ptcl,ptid,nodes,align=None,alicmp=("dot",{}),cmp=("dot",{}), ralign=None, alircmp=("dot",{}),cmptmp=None,masktmp=None): rt=EMUtil.get_image_count(nodes) if cmptmp==None or masktmp==None: ### Compare to the two children seperately data={"images":["cache",ptcl,ptid], "nodes":["cache",nodes,0,rt]} cmpdiff=False else: ### Mask out the difference between the two children cn=EMUtil.get_image_count(cmptmp) mn=EMUtil.get_image_count(masktmp) data={"images":["cache",ptcl,ptid], "nodes":["cache",nodes,0,rt], "cmptmp":["cache",cmptmp,0,cn], "masktmp":["cache",masktmp,0,mn] } cmpdiff=True JSTask.__init__(self,"TreeClassify",data,{},"") self.options={"align":align, "alicmp":alicmp, "cmp":cmp, "ralign":ralign, "alircmp":alircmp,"cmpdiff":cmpdiff, "id":ptid}
def __init__(self, volume, tilted, imgnum, eulerxform, zrot, distplot, tiltrange, tiltstep, options): if options.shrink: shrunkvol = volume.process("math.meanshrink",{"n":options.shrink}) shrunktilted = tilted.process("math.meanshrink",{"n":options.shrink}) data = {"volume":shrunkvol,"tilted":shrunktilted} else: data = {"volume":volume,"tilted":tilted} JSTask.__init__(self,"CmpTilt",data,options,"") self.imgnum = imgnum self.eulerxform=eulerxform self.zrot=zrot self.distplot=distplot self.tiltrange=tiltrange self.tiltstep=tiltstep
def __init__(self, command="e2simmx.py", data=None, options=None): JSTask.__init__(self, command, data, options) # options should have these keys: # align - the main aligner, a list of two strings # alligncmp - the main align cmp - a list of two strings # ralign - the refine aligner, a list of two string. May be None which turns it off # raligncmp - the refinealigncmp - a list of two strings. Needs to specified if ralign is not None # cmp - the final cmp - a list of two strings # shrink - a shrink value (float), may be None or unspecified - shrink the data prior to computing similarity scores, will adjust to produce a good box size # data should have # particles - a Task-style cached list of input images # references - a Task-style cached list of reference images self.sim_data = {} # this will store the eventual results
def __init__(self,command="e2simmx.py",data=None,options=None): JSTask.__init__(self,command,data,options) # options should have these keys: # align - the main aligner, a list of two strings # alligncmp - the main align cmp - a list of two strings # ralign - the refine aligner, a list of two string. May be None which turns it off # raligncmp - the refinealigncmp - a list of two strings. Needs to specified if ralign is not None # cmp - the final cmp - a list of two strings # shrink - a shrink value (int), may be None or unspecified - shrink the data by an integer amount prior to computing similarity scores # data should have # particles - a Task-style cached list of input images # references - a Task-style cached list of reference images self.sim_data = {} # this will store the eventual results
def __init__(self, info, ref, options): data = {"info": info, "ref": ref} JSTask.__init__(self, "SpaClassifyTask", data, {}, "") self.options = options
def __init__(self, info, ref, options): data={"info":info, "ref": ref} JSTask.__init__(self,"SptTltRefine",data,{},"") self.options=options
def __init__(self, inp, options): data = {"data": inp} JSTask.__init__(self, "Sptavg", data, {}, "") self.options = options
def __init__(self, options, imgfile, imgindx, outf,nfs): JSTask.__init__(self,"TomoBoxer3d",{},"") self.classoptions={"options":options,"imgfile":imgfile,"imgindx":imgindx,"outf":outf,"nfs":nfs}
def __init__(self, inp, seed, options): data={"data":inp,"seed":seed} JSTask.__init__(self,"Make3d",data,{},"") self.options=options
def __init__(self, inp, refs, options): data = {"data": inp, "refnames": refs} JSTask.__init__(self, "Sptavg", data, {}, "") self.options = options
def __init__(self,ptclfile=None,ptcln=0,orts=[],tryid=0,strucfac=None,niter=5,sym="c1",mask2=None,randorient=False,verbose=0) : data={"images":["cache",ptclfile,(0,ptcln)],"strucfac":strucfac,"orts":orts,"mask2":mask2} JSTask.__init__(self,"InitMdl",data,{"tryid":tryid,"iter":niter,"sym":sym,"randorient":randorient,"verbose":verbose},"")
def __init__(self, fsp, i, ref, options): data = {"fsp": fsp, "i": i, "ref": ref} JSTask.__init__(self, "SptAlign", data, {}, "") self.options = options
def __init__(self, data, options): JSTask.__init__(self, "SptAlign", data, {}, "") self.options = options
def __init__(self, data, options, allxfs, allinfo): JSTask.__init__(self, "SptExtract", data, {}, "") self.options = options self.allxfs = allxfs self.allinfo = allinfo
def __init__(self, data, options): JSTask.__init__(self,"SptAlign",data,{},"") self.options=options if options.mask!=None: raise Exception("--mask not supported in scipy mode")
def __init__(self, info, options): data = {"info": info} JSTask.__init__(self, "SpaAlignTask", data, {}, "") self.options = options
def __init__(self, inp, ref, options): data={"data":inp, "ref":ref} JSTask.__init__(self,"Weightptcl",data,{},"") self.options=options