def test_load_directory_data(): invalid_directory_path = 'invalid_directory_path' valid_dummy_directory = resource_filename('EmoPy','tests/unittests/resources/dummy_data_directory') empty_dummy_directory = resource_filename('EmoPy','tests/unittests/resources/dummy_empty_data_directory') channels = 1 # should raise error when receives an invalid directory path with pytest.raises(NotADirectoryError): DirectoryDataLoader(datapath=invalid_directory_path) # should raise error when tries to load empty directory data_loader = DirectoryDataLoader(datapath=empty_dummy_directory) with pytest.raises(AssertionError): data_loader.load_data()
validation_split = 0.15 verbose = True model_name = 'inception_v3' target_dimensions = (128, 128) target_dimensions2 = (490, 640) #directory_path = r'C:\Users\localadmin\Desktop\final_proj\cohn-kanade-images2' directory_path = r'D:\Degree\Final project\cohn-kanade-formated2' data_loader = DirectoryDataLoader(datapath=directory_path, validation_split=validation_split, target_dimension=target_dimensions2, out_channels=3) dataset = data_loader.load_data() if verbose: dataset.print_data_details() print('Creating training/testing data...') train_images, train_labels = dataset.get_training_data() train_gen = DataGenerator().fit(train_images, train_labels) test_images, test_labels = dataset.get_test_data() test_gen = DataGenerator().fit(test_images, test_labels) print('Initializing neural network with InceptionV3 base model...') model = TransferLearningNN(model_name=model_name, emotion_map=dataset.get_emotion_index_map()) print('Training model...')