def inputs_calc(self,g_tt_vec,time_step_sim,numb_syn,w_vec_tt,syn_func,tau_syn,tt,delta_t,spike_trains_complete): from Euler_Method import Euler # import Euler to perform the Euler integration method for syn in range(1,numb_syn+1): # loop through synapses for sp in range(1,len(spike_trains_complete[syn-1])): # loop through spikes if spike_trains_complete[syn-1][sp-1]>=tt-time_step_sim and spike_trains_complete[syn-1][sp-1]<tt+time_step_sim: g_tt_vec[syn-1]=g_tt_vec[syn-1]+w_vec_tt[syn-1] # call function from Euler_Method to integrate the conductance g_1=Euler() g_tt_vec[syn-1]=g_1.euler_integration(syn_func, tau_syn, g_tt_vec[syn-1], tt, time_step_sim, delta_t) # gives us the value of the differential equation at certain time return [g_tt_vec]
def inputs(self,g_tt_vec,time_step_sim,spikes,spiketrue,numb_syn,weight,syn_func,tau_syn,tt,counter,delta_t): from Euler_Method import Euler for syn in range(1,numb_syn+1): # loop over synapses # get spike times: if np.sum(spiketrue[np.where(np.tile(tt,len(spikes))==spikes)])>0: # input is delivered counter += 1 g_tt_vec[syn-1]=g_tt_vec[syn-1]+weight[syn-1] # call function from Euler_Method to integrate the conductance g_1=Euler() g_tt_vec[syn-1]=g_1.euler_integration(syn_func, tau_syn, g_tt_vec[syn-1], tt, time_step_sim, delta_t) # gives us the value of the differential equation at certain time return [g_tt_vec,counter]
def inputs_pois(self, g_tt_vec, time_step_sim, firing_rate, numb_syn, weight, syn_func, tau_syn, tt, counter, delta_t): # g_tt_vec contains all the conductances from the last timestep # syn_func contains the function of the the conductances, of the synapse type (needed for Euler Integration) # weight is the synaptic strength # counter counts the number of inputs from Euler_Method import Euler for syn in range(1, numb_syn + 1): if random.uniform(0, 1) <= (firing_rate * time_step_sim / 1000): counter += 1 g_tt_vec[syn - 1] = g_tt_vec[syn - 1] + weight[syn - 1] # call function from Euler_Method to integrate the conductance g_1 = Euler() g_tt_vec[syn - 1] = g_1.euler_integration( syn_func, tau_syn, g_tt_vec[syn - 1], tt, time_step_sim, delta_t ) # gives us the value of the differential equation at certain time return [g_tt_vec, counter]
numb_inh_syn, w_i_vec_tt, inhib_syn, tau_i, tt, delta_t, spike_trains_complete_i) total_inh_input_tt = sum([ww * (E_i - V_tt) for ww in g_i_tt_vec]) # Include STDP in excitatory synapses. (1) # Check if there was LTD by comparing all new pre-spikes in this timepoint with the latest post-spike. w_e_vec_tt = exc_STDP.STDP_post_pre(last_post_spike - time_step_sim / 10, spike_trains_complete_e, tt, time_step_sim, w_e_vec_tt, tau_LTD, A_LTD, w_max) # update the postsynaptic neuron. total_input_tt = total_exc_input_tt + total_inh_input_tt V_1 = Euler() V = V_1.euler_integration(memb_volt, arg_for_V, V_tt, tt, time_step_sim, delta_t) if V < V_thresh: V_tt = V else: # if threshold is reached -> spike & reset mem V V_tt = V_reset # log spike time (for figure) V_vals.append(0) t_vals.append(tt - time_step_sim / 10) spike_times.append(tt) number_spikes += 1 ### include STDP in excitatory synapses. (2) # check if there was LTP: compare this post-spike to all most recent pre-spikes. w_e_vec_tt = exc_STDP.STDP_pre_post(tt + time_step_sim / 10, spike_trains_complete_e,