コード例 #1
0
def test_logging():
    from EvoDAG.model import EvoDAG as evodag
    y = cl.copy()
    mask = y == 0
    y[mask] = 1
    y[~mask] = -1
    evodag(generations=np.inf,
           tournament_size=2,
           early_stopping_rounds=-1,
           classifier=False,
           seed=0,
           popsize=10).fit(X, y, test_set=X)
コード例 #2
0
def test_regression():
    from EvoDAG.model import EvoDAG as evodag
    x = np.linspace(-1, 1, 100)
    y = 4.3 * x**2 + 3.2 * x - 3.2
    gp = evodag(classifier=False, popsize=10,
                generations=2).fit([SparseArray.fromlist(x)],
                                   y,
                                   test_set=[SparseArray.fromlist(x)])
    model = gp.model
    yh = gp.predict([SparseArray.fromlist(x)])
    assert not model._classifier
    yh1 = model.predict(X=[SparseArray.fromlist(x)])
    spf = SparseArray.fromlist
    assert spf(yh).SSE(spf(yh1)) == 0
コード例 #3
0
def test_ensemble_model():
    from EvoDAG.model import EvoDAG as evodag
    from EvoDAG.model import Ensemble
    y = cl.copy()
    mask = y == 0
    y[mask] = 1
    y[~mask] = -1
    gps = [
        evodag(generations=np.inf,
               tournament_size=2,
               early_stopping_rounds=-1,
               classifier=False,
               seed=seed,
               popsize=10).fit(X[:-10], y[:-10], test_set=X)
        for seed in range(3)
    ]
    ens = Ensemble([gp.model for gp in gps])
    res = [gp.decision_function(X) for gp in gps]
    res = np.median([x.finite().full_array() for x in res], axis=0)
    r2 = ens.decision_function(X)
    print(res, r2)
    assert np.fabs(res - r2).mean() == 0
コード例 #4
0
def test_probability_calibration_ensemble():
    class C(object):
        def __init__(self):
            pass

        def fit(self, X, y):
            self._X = X
            return self

        def predict_proba(self, X):
            return np.array([[0, 1], [0.5, 0.5], [1, 0]])

    from EvoDAG.model import EvoDAGE as evodag
    model = evodag(time_limit=4,
                   early_stopping_rounds=10,
                   probability_calibration=C).fit(X, cl)
    for m in model.models:
        assert isinstance(m._probability_calibration, C)
    assert model.probability_calibration
    hy = model.predict_proba(X)
    pr = np.array([[0, 1], [0.5, 0.5], [1, 0]])
    assert np.fabs(hy - pr).sum() == 0
    default_nargs()