def main_slim(): URM = sps.csr_matrix(sps.load_npz("../../../Dataset/URM/data_all.npz")) URM_test = sps.csr_matrix( sps.load_npz("../../../Dataset/URM/data_test.npz")) users = utils.get_target_users("../../../Dataset/target_users.csv", seek=8) validator = validate(URM_test, [10]) recommender = SLIM_BPR_Recommender(URM) recommender.fit() '''
def main_sslim(): URM = sps.csr_matrix(sps.load_npz("../../Dataset/URM/data_all.npz")) URM_test = sps.csr_matrix(sps.load_npz("../../Dataset/URM/data_test.npz")) URM_1 = sps.csr_matrix(sps.load_npz("../../Dataset/old/similarities/CB-Sim.npz")) URM_2 = sps.csr_matrix(sps.load_npz("../../Dataset/old/similarities/Col-Sim.npz")) URM_3 = sps.csr_matrix(sps.load_npz("../../Dataset/old/similarities/Slim-Sim.npz")) URM_4 = normalize(URM_3, min(min(URM_1.data), min(URM_2.data)), max(max(URM_1.data), max(URM_2.data))) mauri_recsys = ReccomenderSslim(URM) validator = validate(URM_test, [10]) targetUsers = util.get_target_users("../../Dataset/target_users.csv", seek=8) #similarity_matrix = mauri.similarityMatrixTopK(0.31*URM_1 + 1.82*URM_2 + 0.76*URM_4, k=25) mauri_recsys.fit(train="-train")
import scipy.sparse as sps import utils_new as utils import evaluator as evaluate import random from External_Libraries.Evaluation.Evaluator import EvaluatorHoldout as validate from External_Libraries.MatrixFactorization.PyTorch.MF_MSE_PyTorch import MF_MSE_PyTorch URM = sps.load_npz("../../Dataset/old/data_train.npz") URM_test = sps.csr_matrix(sps.load_npz("../../Dataset/old/data_test.npz")) users = utils.get_target_users("../../Dataset/target_users.csv", seek=8) validator = validate(URM_test, [10]) recommender = MF_MSE_PyTorch(URM) for ep in [30]: for batch in [16, 32, 64, 128, 256, 512, 1024, 2048, 4096]: for i in range(10, 1000, 100): for lr in [1e-6]: recommender.fit(ep,batch,i,lr) print("FACTOR:{0}, BATCH:{1}, LR:{2}, EPOCHS:{3}".format( i, batch, lr, ep)) print(evaluate.evaluate(users, recommender, URM_test, 10)["MAP"]) #results = validator.evaluateRecommender(recommender) #print(results[0][10]["MAP"]) print("\n")