} } if (core_config < 1) or (core_config > 3): raise TypeError('Invalid core configuration no. [1-3].') else: core = np.ones(nfa, dtype=np.int) core[1::2] += core_config cum_sum_list = lambda l1: l1[0] + cum_sum_list(l1[1:]) if len(l1) != 1 else l1[ 0] media = cum_sum_list([get_fa(core[i], i, Lmat) for i in range(nfa)]) # set b.c. LBC, RBC = 0, 0 Heter2GSlab_data = input_data(xs_media, media, xi, geometry_type, LBC, RBC) if __name__ == "__main__": import logging as lg lg.info("*** Solve the Rahnema 1997 problem ***") from FDsDiff1D import run_calc_with_RM_its, solver_options ritmax = 10 CMFD, pCMFD = True, False slvr_opts = solver_options(ritmax=ritmax, CMFD=CMFD, pCMFD=pCMFD) filename = "../output/kflx_Rahnema1997_C%d_LBC%dRBC%d_I%d_itr%d" % \ (core_config, LBC, RBC, I, ritmax) flx, k = run_calc_with_RM_its(Heter2GSlab_data, slvr_opts, filename)
for I0 in [40]: m = 'PUa' # only one case in the test suite L = rc = 1.853722 * 2 # cm, critical length # L = rc = 0.605055 # mfp xs_media, media = set_media(materials[m], L, m) geo = "slab" case = "%s-1-0-%s" % (m, get_geoid(geo)) # + 'h' lg.info("Test case: " + case) # I = I0 #* 2 # number of cells in the spatial mesh I = 25 r = equivolume_mesh(I, 0, L, geo) # r = np.array([0, 1 / 8., 1 / 6., 0.9, 1]) * L data = input_data(xs_media, media, r, geo, LBC=0, RBC=0) # ks is needed anyway when validating the input solver options k, flx = solve_cpm1D(data, solver_options(ks=np.full(I, 0)), False) np.testing.assert_allclose(k, 1, atol=1.e-3, err_msg=case + ": criticality not verified") np.save(os.path.join(odir, case + '_ref_I%d.npy' % I), [k, flx, None]) m = 'PUb' # only one case in the test suite # critical lengths rc_dict = {'slab': 2.256751, 'cylinder': 4.279960, 'sphere': 6.082547} for geo in geoms: case = "%s-1-0-%s" % (m, get_geoid(geo))
diffsol_ref = lambda x: np.sin(BG * x) / x # integration of sin(x)/x yields 'sine integral func' # anorm, _ = sici(BG * L) # integration of (sin(BG*r)/r) r**2 dr yields anorm = (np.sin(BG * L) - BG * L * np.cos(BG * L)) / BG**2 Dktol, Dftol = 2e-3, 2e-2 # r = geomprogr_mesh(N=I, L=L, ratio=0.95) r = equivolume_mesh(I, 0, L, geo) lg.info('Reference critical length (L) is %.6f cm' % L) lg.info('Extrapolation distance (zeta*D) is %.3f cm' % extrap_len) xs_media, media = set_media(materials[m], L, m) data = input_data(xs_media, media, r, geo, LBC=LBC, RBC=0, per_unit_angle=True) # *** WARNING *** # The extrapolation length is a quite large w.r.t. to the problem # width in these problems. Therefore, the numerical solution can be # very different from the analytical one (still an extrapolation # length is considered). lg.info(' -o-' * 15) lg.info('analytical solution of the diffusion equation') ansol, DFkref = diffsol_ref(data.xim), \ diffk_ref(BG**2, materials[m]) # lg.info('fund. flx\n' + # str(ansol / np.sum(ansol * data.Vi) * G * I))
materials = change_H2O(materials) # -------------------------------------------------------------------------- # Problem 30 m, geo = 'Ue', 'slab' case = "%s-Fe-Na-1-0-%s" % (m, get_geoid(geo)) L0, L1, L2, L = 0.317337461, 5.437057544, 5.754395005, Lc[case] LBC = RBC = 0 I0 = 65 # within clad - Fe I1 = 180 # fuel I2 = 100 # within moderator - Na I = [I0, I1, I0, I2] widths_of_buffers = [L0, L1, L2, L] xs_media, media = set_media(materials, widths_of_buffers, ['Fe', m, 'Fe', 'Na']) r = equivolume_mesh(I0, 0, widths_of_buffers[0], geo) for i in range(3): Lb, Le = widths_of_buffers[i], widths_of_buffers[i+1] Ix = I[i] #[i] = I0 if i % 2 == 0 else I1 r = np.append(r, equivolume_mesh(Ix, Lb, Le, geo)[1:]) data = input_data(xs_media, media, r, geo, LBC=LBC, RBC=RBC) slvr_opts = solver_options(iitmax=5, oitmax=5, ritmax=200, CMFD=True, pCMFD=False, Anderson_depth='auto') filename = os.path.join(odir, case + "_LBC%dRBC%d_I%d" % (LBC, RBC, sum(I))) flx, k = run_calc_with_RM_its(data, slvr_opts, filename) np.testing.assert_allclose(k, 1.0, atol=1.e-4, err_msg=case + ": criticality not verified")