def test_TFE_2Dx1D_scalar_quad(): T = UFCInterval() P1 = Lagrange(T, 1) P1_DG = DiscontinuousLagrange(T, 1) elt = TensorProductElement(TensorProductElement(P1, P1_DG), P1) assert elt.value_shape() == () tab = elt.tabulate(1, [(0.1, 0.2, 0.3)]) tA = P1.tabulate(1, [(0.1, )]) tB = P1_DG.tabulate(1, [(0.2, )]) tC = P1.tabulate(1, [(0.3, )]) for da, db, dc in [[(0, ), (0, ), (0, )], [(1, ), (0, ), (0, )], [(0, ), (1, ), (0, )], [(0, ), (0, ), (1, )]]: dd = da + db + dc assert np.isclose(tab[dd][0][0], tA[da][0][0] * tB[db][0][0] * tC[dc][0][0]) assert np.isclose(tab[dd][1][0], tA[da][0][0] * tB[db][0][0] * tC[dc][1][0]) assert np.isclose(tab[dd][2][0], tA[da][0][0] * tB[db][1][0] * tC[dc][0][0]) assert np.isclose(tab[dd][3][0], tA[da][0][0] * tB[db][1][0] * tC[dc][1][0]) assert np.isclose(tab[dd][4][0], tA[da][1][0] * tB[db][0][0] * tC[dc][0][0]) assert np.isclose(tab[dd][5][0], tA[da][1][0] * tB[db][0][0] * tC[dc][1][0]) assert np.isclose(tab[dd][6][0], tA[da][1][0] * tB[db][1][0] * tC[dc][0][0]) assert np.isclose(tab[dd][7][0], tA[da][1][0] * tB[db][1][0] * tC[dc][1][0])
def test_TFE_2Dx1D_vector_quad_hdiv(): T = UFCInterval() P1 = Lagrange(T, 1) P0 = DiscontinuousLagrange(T, 0) P1_DG = DiscontinuousLagrange(T, 1) P1P0 = Hdiv(TensorProductElement(P1, P0)) P0P1 = Hdiv(TensorProductElement(P0, P1)) horiz_elt = EnrichedElement(P1P0, P0P1) elt = Hdiv(TensorProductElement(horiz_elt, P1_DG)) assert elt.value_shape() == (3, ) tab = elt.tabulate(1, [(0.1, 0.2, 0.3)]) tA = P1.tabulate(1, [(0.1, )]) tB = P0.tabulate(1, [(0.2, )]) tC = P0.tabulate(1, [(0.1, )]) tD = P1.tabulate(1, [(0.2, )]) tE = P1_DG.tabulate(1, [(0.3, )]) for da, db, dc in [[(0, ), (0, ), (0, )], [(1, ), (0, ), (0, )], [(0, ), (1, ), (0, )], [(0, ), (0, ), (1, )]]: dd = da + db + dc assert np.isclose(tab[dd][0][0][0], -tA[da][0][0] * tB[db][0][0] * tE[dc][0][0]) assert np.isclose(tab[dd][1][0][0], -tA[da][0][0] * tB[db][0][0] * tE[dc][1][0]) assert np.isclose(tab[dd][2][0][0], -tA[da][1][0] * tB[db][0][0] * tE[dc][0][0]) assert np.isclose(tab[dd][3][0][0], -tA[da][1][0] * tB[db][0][0] * tE[dc][1][0]) assert tab[dd][4][0][0] == 0.0 assert tab[dd][5][0][0] == 0.0 assert tab[dd][6][0][0] == 0.0 assert tab[dd][7][0][0] == 0.0 assert tab[dd][0][1][0] == 0.0 assert tab[dd][1][1][0] == 0.0 assert tab[dd][2][1][0] == 0.0 assert tab[dd][3][1][0] == 0.0 assert np.isclose(tab[dd][4][1][0], tC[da][0][0] * tD[db][0][0] * tE[dc][0][0]) assert np.isclose(tab[dd][5][1][0], tC[da][0][0] * tD[db][0][0] * tE[dc][1][0]) assert np.isclose(tab[dd][6][1][0], tC[da][0][0] * tD[db][1][0] * tE[dc][0][0]) assert np.isclose(tab[dd][7][1][0], tC[da][0][0] * tD[db][1][0] * tE[dc][1][0]) assert tab[dd][0][2][0] == 0.0 assert tab[dd][1][2][0] == 0.0 assert tab[dd][2][2][0] == 0.0 assert tab[dd][3][2][0] == 0.0 assert tab[dd][4][2][0] == 0.0 assert tab[dd][5][2][0] == 0.0 assert tab[dd][6][2][0] == 0.0 assert tab[dd][7][2][0] == 0.0
def test_flattened_against_tpe_quad(): T = UFCInterval() P1 = Lagrange(T, 1) tpe_quad = TensorProductElement(P1, P1) flattened_quad = FlattenedDimensions(tpe_quad) assert tpe_quad.value_shape() == () tpe_tab = tpe_quad.tabulate(1, [(0.1, 0.2)]) flattened_tab = flattened_quad.tabulate(1, [(0.1, 0.2)]) for da, db in [[(0, ), (0, )], [(1, ), (0, )], [(0, ), (1, )]]: dc = da + db assert np.isclose(tpe_tab[dc][0][0], flattened_tab[dc][0][0]) assert np.isclose(tpe_tab[dc][1][0], flattened_tab[dc][1][0]) assert np.isclose(tpe_tab[dc][2][0], flattened_tab[dc][2][0]) assert np.isclose(tpe_tab[dc][3][0], flattened_tab[dc][3][0])
def test_TFE_2Dx1D_vector_triangle_hcurl(): S = UFCTriangle() T = UFCInterval() Ned1 = Nedelec(S, 1) P1 = Lagrange(T, 1) elt = Hcurl(TensorProductElement(Ned1, P1)) assert elt.value_shape() == (3, ) tab = elt.tabulate(1, [(0.1, 0.2, 0.3)]) tabA = Ned1.tabulate(1, [(0.1, 0.2)]) tabB = P1.tabulate(1, [(0.3, )]) for da, db in [[(0, 0), (0, )], [(1, 0), (0, )], [(0, 1), (0, )], [(0, 0), (1, )]]: dc = da + db assert np.isclose(tab[dc][0][0][0], tabA[da][0][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][1][0][0], tabA[da][0][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][2][0][0], tabA[da][1][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][3][0][0], tabA[da][1][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][4][0][0], tabA[da][2][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][5][0][0], tabA[da][2][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][0][1][0], tabA[da][0][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][1][1][0], tabA[da][0][1][0] * tabB[db][1][0]) assert np.isclose(tab[dc][2][1][0], tabA[da][1][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][3][1][0], tabA[da][1][1][0] * tabB[db][1][0]) assert np.isclose(tab[dc][4][1][0], tabA[da][2][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][5][1][0], tabA[da][2][1][0] * tabB[db][1][0]) assert tab[dc][0][2][0] == 0.0 assert tab[dc][1][2][0] == 0.0 assert tab[dc][2][2][0] == 0.0 assert tab[dc][3][2][0] == 0.0 assert tab[dc][4][2][0] == 0.0 assert tab[dc][5][2][0] == 0.0
def test_TFE_2Dx1D_vector_triangle_hdiv(): S = UFCTriangle() T = UFCInterval() RT1 = RaviartThomas(S, 1) P1_DG = DiscontinuousLagrange(T, 1) elt = Hdiv(TensorProductElement(RT1, P1_DG)) assert elt.value_shape() == (3, ) tab = elt.tabulate(1, [(0.1, 0.2, 0.3)]) tabA = RT1.tabulate(1, [(0.1, 0.2)]) tabB = P1_DG.tabulate(1, [(0.3, )]) for da, db in [[(0, 0), (0, )], [(1, 0), (0, )], [(0, 1), (0, )], [(0, 0), (1, )]]: dc = da + db assert np.isclose(tab[dc][0][0][0], tabA[da][0][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][1][0][0], tabA[da][0][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][2][0][0], tabA[da][1][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][3][0][0], tabA[da][1][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][4][0][0], tabA[da][2][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][5][0][0], tabA[da][2][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][0][1][0], tabA[da][0][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][1][1][0], tabA[da][0][1][0] * tabB[db][1][0]) assert np.isclose(tab[dc][2][1][0], tabA[da][1][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][3][1][0], tabA[da][1][1][0] * tabB[db][1][0]) assert np.isclose(tab[dc][4][1][0], tabA[da][2][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][5][1][0], tabA[da][2][1][0] * tabB[db][1][0]) assert tab[dc][0][2][0] == 0.0 assert tab[dc][1][2][0] == 0.0 assert tab[dc][2][2][0] == 0.0 assert tab[dc][3][2][0] == 0.0 assert tab[dc][4][2][0] == 0.0 assert tab[dc][5][2][0] == 0.0
def test_TFE_1Dx1D_vector(): T = UFCInterval() P1_DG = DiscontinuousLagrange(T, 1) P2 = Lagrange(T, 2) elt = TensorProductElement(P1_DG, P2) hdiv_elt = Hdiv(elt) hcurl_elt = Hcurl(elt) assert hdiv_elt.value_shape() == (2, ) assert hcurl_elt.value_shape() == (2, ) tabA = P1_DG.tabulate(1, [(0.1, )]) tabB = P2.tabulate(1, [(0.2, )]) hdiv_tab = hdiv_elt.tabulate(1, [(0.1, 0.2)]) for da, db in [[(0, ), (0, )], [(1, ), (0, )], [(0, ), (1, )]]: dc = da + db assert hdiv_tab[dc][0][0][0] == 0.0 assert hdiv_tab[dc][1][0][0] == 0.0 assert hdiv_tab[dc][2][0][0] == 0.0 assert hdiv_tab[dc][3][0][0] == 0.0 assert hdiv_tab[dc][4][0][0] == 0.0 assert hdiv_tab[dc][5][0][0] == 0.0 assert np.isclose(hdiv_tab[dc][0][1][0], tabA[da][0][0] * tabB[db][0][0]) assert np.isclose(hdiv_tab[dc][1][1][0], tabA[da][0][0] * tabB[db][1][0]) assert np.isclose(hdiv_tab[dc][2][1][0], tabA[da][0][0] * tabB[db][2][0]) assert np.isclose(hdiv_tab[dc][3][1][0], tabA[da][1][0] * tabB[db][0][0]) assert np.isclose(hdiv_tab[dc][4][1][0], tabA[da][1][0] * tabB[db][1][0]) assert np.isclose(hdiv_tab[dc][5][1][0], tabA[da][1][0] * tabB[db][2][0]) hcurl_tab = hcurl_elt.tabulate(1, [(0.1, 0.2)]) for da, db in [[(0, ), (0, )], [(1, ), (0, )], [(0, ), (1, )]]: dc = da + db assert np.isclose(hcurl_tab[dc][0][0][0], tabA[da][0][0] * tabB[db][0][0]) assert np.isclose(hcurl_tab[dc][1][0][0], tabA[da][0][0] * tabB[db][1][0]) assert np.isclose(hcurl_tab[dc][2][0][0], tabA[da][0][0] * tabB[db][2][0]) assert np.isclose(hcurl_tab[dc][3][0][0], tabA[da][1][0] * tabB[db][0][0]) assert np.isclose(hcurl_tab[dc][4][0][0], tabA[da][1][0] * tabB[db][1][0]) assert np.isclose(hcurl_tab[dc][5][0][0], tabA[da][1][0] * tabB[db][2][0]) assert hcurl_tab[dc][0][1][0] == 0.0 assert hcurl_tab[dc][1][1][0] == 0.0 assert hcurl_tab[dc][2][1][0] == 0.0 assert hcurl_tab[dc][3][1][0] == 0.0 assert hcurl_tab[dc][4][1][0] == 0.0 assert hcurl_tab[dc][5][1][0] == 0.0
def test_TFE_1Dx1D_scalar(): T = UFCInterval() P1_DG = DiscontinuousLagrange(T, 1) P2 = Lagrange(T, 2) elt = TensorProductElement(P1_DG, P2) assert elt.value_shape() == () tab = elt.tabulate(1, [(0.1, 0.2)]) tabA = P1_DG.tabulate(1, [(0.1, )]) tabB = P2.tabulate(1, [(0.2, )]) for da, db in [[(0, ), (0, )], [(1, ), (0, )], [(0, ), (1, )]]: dc = da + db assert np.isclose(tab[dc][0][0], tabA[da][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][1][0], tabA[da][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][2][0], tabA[da][0][0] * tabB[db][2][0]) assert np.isclose(tab[dc][3][0], tabA[da][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][4][0], tabA[da][1][0] * tabB[db][1][0]) assert np.isclose(tab[dc][5][0], tabA[da][1][0] * tabB[db][2][0])
def test_TFE_2Dx1D_scalar_triangle_hdiv(): S = UFCTriangle() T = UFCInterval() P1_DG = DiscontinuousLagrange(S, 1) P2 = Lagrange(T, 2) elt = Hdiv(TensorProductElement(P1_DG, P2)) assert elt.value_shape() == (3, ) tab = elt.tabulate(1, [(0.1, 0.2, 0.3)]) tabA = P1_DG.tabulate(1, [(0.1, 0.2)]) tabB = P2.tabulate(1, [(0.3, )]) for da, db in [[(0, 0), (0, )], [(1, 0), (0, )], [(0, 1), (0, )], [(0, 0), (1, )]]: dc = da + db assert tab[dc][0][0][0] == 0.0 assert tab[dc][1][0][0] == 0.0 assert tab[dc][2][0][0] == 0.0 assert tab[dc][3][0][0] == 0.0 assert tab[dc][4][0][0] == 0.0 assert tab[dc][5][0][0] == 0.0 assert tab[dc][6][0][0] == 0.0 assert tab[dc][7][0][0] == 0.0 assert tab[dc][8][0][0] == 0.0 assert tab[dc][0][1][0] == 0.0 assert tab[dc][1][1][0] == 0.0 assert tab[dc][2][1][0] == 0.0 assert tab[dc][3][1][0] == 0.0 assert tab[dc][4][1][0] == 0.0 assert tab[dc][5][1][0] == 0.0 assert tab[dc][6][1][0] == 0.0 assert tab[dc][7][1][0] == 0.0 assert tab[dc][8][1][0] == 0.0 assert np.isclose(tab[dc][0][2][0], tabA[da][0][0] * tabB[db][0][0]) assert np.isclose(tab[dc][1][2][0], tabA[da][0][0] * tabB[db][1][0]) assert np.isclose(tab[dc][2][2][0], tabA[da][0][0] * tabB[db][2][0]) assert np.isclose(tab[dc][3][2][0], tabA[da][1][0] * tabB[db][0][0]) assert np.isclose(tab[dc][4][2][0], tabA[da][1][0] * tabB[db][1][0]) assert np.isclose(tab[dc][5][2][0], tabA[da][1][0] * tabB[db][2][0]) assert np.isclose(tab[dc][6][2][0], tabA[da][2][0] * tabB[db][0][0]) assert np.isclose(tab[dc][7][2][0], tabA[da][2][0] * tabB[db][1][0]) assert np.isclose(tab[dc][8][2][0], tabA[da][2][0] * tabB[db][2][0])
def test_flattened_against_tpe_hex(): T = UFCInterval() P1 = Lagrange(T, 1) tpe_quad = TensorProductElement(P1, P1) tpe_hex = TensorProductElement(tpe_quad, P1) flattened_quad = FlattenedDimensions(tpe_quad) flattened_hex = FlattenedDimensions( TensorProductElement(flattened_quad, P1)) assert tpe_quad.value_shape() == () tpe_tab = tpe_hex.tabulate(1, [(0.1, 0.2, 0.3)]) flattened_tab = flattened_hex.tabulate(1, [(0.1, 0.2, 0.3)]) for da, db, dc in [[(0, ), (0, ), (0, )], [(1, ), (0, ), (0, )], [(0, ), (1, ), (0, )], [(0, ), (0, ), (1, )]]: dd = da + db + dc assert np.isclose(tpe_tab[dd][0][0], flattened_tab[dd][0][0]) assert np.isclose(tpe_tab[dd][1][0], flattened_tab[dd][1][0]) assert np.isclose(tpe_tab[dd][2][0], flattened_tab[dd][2][0]) assert np.isclose(tpe_tab[dd][3][0], flattened_tab[dd][3][0]) assert np.isclose(tpe_tab[dd][4][0], flattened_tab[dd][4][0]) assert np.isclose(tpe_tab[dd][5][0], flattened_tab[dd][5][0]) assert np.isclose(tpe_tab[dd][6][0], flattened_tab[dd][6][0]) assert np.isclose(tpe_tab[dd][7][0], flattened_tab[dd][7][0])