def choosing_element(V, degree): cell_geometry = V.mesh().ufl_cell() if cell_geometry == quadrilateral: T = UFCQuadrilateral() raise ValueError( "Point interpolation for quads implemented somewhere else.") elif cell_geometry == triangle: T = UFCTriangle() elif cell_geometry == tetrahedron: T = UFCTetrahedron() else: raise ValueError("Unrecognized cell geometry.") if V.ufl_element().family() == "Kong-Mulder-Veldhuizen": element = KMV(T, degree) elif V.ufl_element().family() == "Lagrange": element = CG(T, degree) elif V.ufl_element().family() == "Discontinuous Lagrange": element = DG(T, degree) else: raise ValueError("Function space not yet supported.") return element
from __future__ import absolute_import, print_function, division import pytest import numpy as np from FIAT.reference_element import UFCInterval, UFCTriangle, UFCTetrahedron from FIAT.reference_element import FiredrakeQuadrilateral, TensorProductCell from tsfc.fem import make_cell_facet_jacobian interval = UFCInterval() triangle = UFCTriangle() quadrilateral = FiredrakeQuadrilateral() tetrahedron = UFCTetrahedron() interval_x_interval = TensorProductCell(interval, interval) triangle_x_interval = TensorProductCell(triangle, interval) quadrilateral_x_interval = TensorProductCell(quadrilateral, interval) @pytest.mark.parametrize( ('cell', 'cell_facet_jacobian'), [(interval, [[], []]), (triangle, [[-1, 1], [0, 1], [1, 0]]), (quadrilateral, [[0, 1], [0, 1], [1, 0], [1, 0]]), (tetrahedron, [[-1, -1, 1, 0, 0, 1], [0, 0, 1, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 0, 1, 0, 0]])]) def test_cell_facet_jacobian(cell, cell_facet_jacobian): facet_dim = cell.get_spatial_dimension() - 1 for facet_number in range(len(cell.get_topology()[facet_dim])): actual = make_cell_facet_jacobian(cell, facet_dim, facet_number) expected = np.reshape(cell_facet_jacobian[facet_number], actual.shape) assert np.allclose(expected, actual)
from FIAT.gauss_legendre import GaussLegendre # noqa: F401 from FIAT.gauss_lobatto_legendre import GaussLobattoLegendre # noqa: F401 from FIAT.restricted import RestrictedElement # noqa: F401 from FIAT.tensor_product import TensorProductElement # noqa: F401 from FIAT.tensor_product import FlattenedDimensions # noqa: F401 from FIAT.hdivcurl import Hdiv, Hcurl # noqa: F401 from FIAT.argyris import Argyris, QuinticArgyris # noqa: F401 from FIAT.hermite import CubicHermite # noqa: F401 from FIAT.morley import Morley # noqa: F401 from FIAT.bubble import Bubble from FIAT.enriched import EnrichedElement # noqa: F401 from FIAT.nodal_enriched import NodalEnrichedElement I = UFCInterval() # noqa: E741 T = UFCTriangle() S = UFCTetrahedron() def test_basis_derivatives_scaling(): "Regression test for issue #9" class Interval(ReferenceElement): def __init__(self, a, b): verts = ((a, ), (b, )) edges = {0: (0, 1)} topology = {0: {0: (0, ), 1: (1, )}, 1: edges} super(Interval, self).__init__(LINE, verts, topology) random.seed(42) for i in range(26): a = 1000.0 * (random.random() - 0.5)
def _tetrahedron_scheme(degree): """Return a quadrature scheme on a tetrahedron of specified degree. Falls back on canonical rule for higher orders""" if degree == 0 or degree == 1: # Scheme from Zienkiewicz and Taylor, 1 point, degree of precision 1 x = array([[1.0/4.0, 1.0/4.0, 1.0/4.0]]) w = array([1.0/6.0]) elif degree == 2: # Scheme from Zienkiewicz and Taylor, 4 points, degree of precision 2 a, b = 0.585410196624969, 0.138196601125011 x = array([[a, b, b], [b, a, b], [b, b, a], [b, b, b]]) w = arange(4, dtype=float64) w[:] = 1.0/24.0 elif degree == 3: # Scheme from Zienkiewicz and Taylor, 5 points, degree of precision 3 # Note: this scheme has a negative weight x = array([[0.2500000000000000, 0.2500000000000000, 0.2500000000000000], [0.5000000000000000, 0.1666666666666666, 0.1666666666666666], [0.1666666666666666, 0.5000000000000000, 0.1666666666666666], [0.1666666666666666, 0.1666666666666666, 0.5000000000000000], [0.1666666666666666, 0.1666666666666666, 0.1666666666666666]]) w = arange(5, dtype=float64) w[0] = -0.8 w[1:5] = 0.45 w = w/6.0 elif degree == 4: # Keast rule, 14 points, degree of precision 4 # Values taken from http://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html # (KEAST5) x = array([[0.0000000000000000, 0.5000000000000000, 0.5000000000000000], [0.5000000000000000, 0.0000000000000000, 0.5000000000000000], [0.5000000000000000, 0.5000000000000000, 0.0000000000000000], [0.5000000000000000, 0.0000000000000000, 0.0000000000000000], [0.0000000000000000, 0.5000000000000000, 0.0000000000000000], [0.0000000000000000, 0.0000000000000000, 0.5000000000000000], [0.6984197043243866, 0.1005267652252045, 0.1005267652252045], [0.1005267652252045, 0.1005267652252045, 0.1005267652252045], [0.1005267652252045, 0.1005267652252045, 0.6984197043243866], [0.1005267652252045, 0.6984197043243866, 0.1005267652252045], [0.0568813795204234, 0.3143728734931922, 0.3143728734931922], [0.3143728734931922, 0.3143728734931922, 0.3143728734931922], [0.3143728734931922, 0.3143728734931922, 0.0568813795204234], [0.3143728734931922, 0.0568813795204234, 0.3143728734931922]]) w = arange(14, dtype=float64) w[0:6] = 0.0190476190476190 w[6:10] = 0.0885898247429807 w[10:14] = 0.1328387466855907 w = w/6.0 elif degree == 5: # Keast rule, 15 points, degree of precision 5 # Values taken from http://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html # (KEAST6) x = array([[0.2500000000000000, 0.2500000000000000, 0.2500000000000000], [0.0000000000000000, 0.3333333333333333, 0.3333333333333333], [0.3333333333333333, 0.3333333333333333, 0.3333333333333333], [0.3333333333333333, 0.3333333333333333, 0.0000000000000000], [0.3333333333333333, 0.0000000000000000, 0.3333333333333333], [0.7272727272727273, 0.0909090909090909, 0.0909090909090909], [0.0909090909090909, 0.0909090909090909, 0.0909090909090909], [0.0909090909090909, 0.0909090909090909, 0.7272727272727273], [0.0909090909090909, 0.7272727272727273, 0.0909090909090909], [0.4334498464263357, 0.0665501535736643, 0.0665501535736643], [0.0665501535736643, 0.4334498464263357, 0.0665501535736643], [0.0665501535736643, 0.0665501535736643, 0.4334498464263357], [0.0665501535736643, 0.4334498464263357, 0.4334498464263357], [0.4334498464263357, 0.0665501535736643, 0.4334498464263357], [0.4334498464263357, 0.4334498464263357, 0.0665501535736643]]) w = arange(15, dtype=float64) w[0] = 0.1817020685825351 w[1:5] = 0.0361607142857143 w[5:9] = 0.0698714945161738 w[9:15] = 0.0656948493683187 w = w/6.0 elif degree == 6: # Keast rule, 24 points, degree of precision 6 # Values taken from http://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html # (KEAST7) x = array([[0.3561913862225449, 0.2146028712591517, 0.2146028712591517], [0.2146028712591517, 0.2146028712591517, 0.2146028712591517], [0.2146028712591517, 0.2146028712591517, 0.3561913862225449], [0.2146028712591517, 0.3561913862225449, 0.2146028712591517], [0.8779781243961660, 0.0406739585346113, 0.0406739585346113], [0.0406739585346113, 0.0406739585346113, 0.0406739585346113], [0.0406739585346113, 0.0406739585346113, 0.8779781243961660], [0.0406739585346113, 0.8779781243961660, 0.0406739585346113], [0.0329863295731731, 0.3223378901422757, 0.3223378901422757], [0.3223378901422757, 0.3223378901422757, 0.3223378901422757], [0.3223378901422757, 0.3223378901422757, 0.0329863295731731], [0.3223378901422757, 0.0329863295731731, 0.3223378901422757], [0.2696723314583159, 0.0636610018750175, 0.0636610018750175], [0.0636610018750175, 0.2696723314583159, 0.0636610018750175], [0.0636610018750175, 0.0636610018750175, 0.2696723314583159], [0.6030056647916491, 0.0636610018750175, 0.0636610018750175], [0.0636610018750175, 0.6030056647916491, 0.0636610018750175], [0.0636610018750175, 0.0636610018750175, 0.6030056647916491], [0.0636610018750175, 0.2696723314583159, 0.6030056647916491], [0.2696723314583159, 0.6030056647916491, 0.0636610018750175], [0.6030056647916491, 0.0636610018750175, 0.2696723314583159], [0.0636610018750175, 0.6030056647916491, 0.2696723314583159], [0.2696723314583159, 0.0636610018750175, 0.6030056647916491], [0.6030056647916491, 0.2696723314583159, 0.0636610018750175]]) w = arange(24, dtype=float64) w[0:4] = 0.0399227502581679 w[4:8] = 0.0100772110553207 w[8:12] = 0.0553571815436544 w[12:24] = 0.0482142857142857 w = w/6.0 else: # Get canonical scheme return _fiat_scheme(UFCTetrahedron(), degree) # Return scheme return QuadratureRule(UFCTetrahedron(), x, w)
from FIAT import finite_element, polynomial_set, dual_set, functional from FIAT.reference_element import (Point, DefaultLine, UFCInterval, UFCQuadrilateral, UFCHexahedron, UFCTriangle, UFCTetrahedron, make_affine_mapping, flatten_reference_cube) from FIAT.P0 import P0Dual import numpy as np hypercube_simplex_map = { Point(): Point(), DefaultLine(): DefaultLine(), UFCInterval(): UFCInterval(), UFCQuadrilateral(): UFCTriangle(), UFCHexahedron(): UFCTetrahedron() } class DPC0(finite_element.CiarletElement): def __init__(self, ref_el): flat_el = flatten_reference_cube(ref_el) poly_set = polynomial_set.ONPolynomialSet( hypercube_simplex_map[flat_el], 0) dual = P0Dual(ref_el) degree = 0 formdegree = ref_el.get_spatial_dimension() # n-form super(DPC0, self).__init__(poly_set=poly_set, dual=dual, order=degree, ref_el=ref_el,
def tetrahedron(): return UFCTetrahedron()
def _kmv_lump_scheme(ref_el, degree): """Specialized quadrature schemes for P < 6 for KMV simplical elements.""" sd = ref_el.get_spatial_dimension() # set the unit element if sd == 2: T = UFCTriangle() elif sd == 3: T = UFCTetrahedron() else: raise ValueError("Dimension not supported") if degree == 1: x = ref_el.vertices w = arange(sd + 1, dtype=float64) if sd == 2: w[:] = 1.0 / 6.0 elif sd == 3: w[:] = 1.0 / 24.0 else: raise ValueError("Dimension not supported") elif degree == 2: if sd == 2: x = list(ref_el.vertices) for e in range(3): x.extend(ref_el.make_points(1, e, 2)) # edge midpoints x.extend(ref_el.make_points(2, 0, 3)) # barycenter w = arange(7, dtype=float64) w[0:3] = 1.0 / 40.0 w[3:6] = 1.0 / 15.0 w[6] = 9.0 / 40.0 elif sd == 3: x = list(ref_el.vertices) x.extend([ (0.0, 0.50, 0.50), (0.50, 0.0, 0.50), (0.50, 0.50, 0.0), (0.0, 0.0, 0.50), (0.0, 0.50, 0.0), (0.50, 0.0, 0.0), ]) # in facets x.extend([ (0.33333333333333337, 0.3333333333333333, 0.3333333333333333), (0.0, 0.3333333333333333, 0.3333333333333333), (0.3333333333333333, 0.0, 0.3333333333333333), (0.3333333333333333, 0.3333333333333333, 0.0), ]) # in the cell x.extend([(1 / 4, 1 / 4, 1 / 4)]) w = arange(15, dtype=float64) w[0:4] = 17.0 / 5040.0 w[4:10] = 2.0 / 315.0 w[10:14] = 9.0 / 560.0 w[14] = 16.0 / 315.0 else: raise ValueError("Dimension not supported") elif degree == 3: if sd == 2: alpha = 0.2934695559090401 beta = 0.2073451756635909 x = list(ref_el.vertices) x.extend([ (1 - alpha, alpha), (alpha, 1 - alpha), (0.0, 1 - alpha), (0.0, alpha), (alpha, 0.0), (1 - alpha, 0.0), ] # edge points ) x.extend([(beta, beta), (1 - 2 * beta, beta), (beta, 1 - 2 * beta)]) # points in center of cell w = arange(12, dtype=float64) w[0:3] = 0.007436456512410291 w[3:9] = 0.02442084061702551 w[9:12] = 0.1103885289202054 elif sd == 3: x = list(ref_el.vertices) x.extend([ (0, 0.685789657581967, 0.314210342418033), (0, 0.314210342418033, 0.685789657581967), (0.314210342418033, 0, 0.685789657581967), (0.685789657581967, 0, 0.314210342418033), (0.685789657581967, 0.314210342418033, 0.0), (0.314210342418033, 0.685789657581967, 0.0), (0, 0, 0.685789657581967), (0, 0, 0.314210342418033), (0, 0.314210342418033, 0.0), (0, 0.685789657581967, 0.0), (0.314210342418033, 0, 0.0), (0.685789657581967, 0, 0.0), ]) # 12 points on edges of facets (0-->1-->2) x.extend( [ (0.21548220313557542, 0.5690355937288492, 0.21548220313557542), (0.21548220313557542, 0.21548220313557542, 0.5690355937288492), (0.5690355937288492, 0.21548220313557542, 0.21548220313557542), (0.0, 0.5690355937288492, 0.21548220313557542), (0.0, 0.21548220313557542, 0.5690355937288492), (0.0, 0.21548220313557542, 0.21548220313557542), (0.5690355937288492, 0.0, 0.21548220313557542), (0.21548220313557542, 0.0, 0.5690355937288492), (0.21548220313557542, 0.0, 0.21548220313557542), (0.5690355937288492, 0.21548220313557542, 0.0), (0.21548220313557542, 0.5690355937288492, 0.0), (0.21548220313557542, 0.21548220313557542, 0.0), ] ) # 12 points (3 points on each facet, 1st two parallel to edge 0) alpha = 1 / 6 x.extend([ (alpha, alpha, 0.5), (0.5, alpha, alpha), (alpha, 0.5, alpha), (alpha, alpha, alpha), ]) # 4 points inside the cell w = arange(32, dtype=float64) w[0:4] = 0.00068688236002531922325120561367839 w[4:16] = 0.0015107814913526136472998739890272 w[16:28] = 0.0050062894680040258624242888174649 w[28:32] = 0.021428571428571428571428571428571 else: raise ValueError("Dimension not supported") elif degree == 4: if sd == 2: alpha = 0.2113248654051871 # 0.2113248654051871 beta1 = 0.4247639617258106 # 0.4247639617258106 beta2 = 0.130791593829745 # 0.130791593829745 x = list(ref_el.vertices) for e in range(3): x.extend(ref_el.make_points(1, e, 2)) # edge midpoints x.extend([ (1 - alpha, alpha), (alpha, 1 - alpha), (0.0, 1 - alpha), (0.0, alpha), (alpha, 0.0), (1 - alpha, 0.0), ] # edge points ) x.extend([(beta1, beta1), (1 - 2 * beta1, beta1), (beta1, 1 - 2 * beta1)]) # points in center of cell x.extend([(beta2, beta2), (1 - 2 * beta2, beta2), (beta2, 1 - 2 * beta2)]) # points in center of cell w = arange(18, dtype=float64) w[0:3] = 0.003174603174603175 # chk w[3:6] = 0.0126984126984127 # chk 0.0126984126984127 w[6:12] = 0.01071428571428571 # chk 0.01071428571428571 w[12:15] = 0.07878121446939182 # chk 0.07878121446939182 w[15:18] = 0.05058386489568756 # chk 0.05058386489568756 else: raise ValueError("Dimension not supported") elif degree == 5: if sd == 2: alpha1 = 0.3632980741536860e-00 alpha2 = 0.1322645816327140e-00 beta1 = 0.4578368380791611e-00 beta2 = 0.2568591072619591e-00 beta3 = 0.5752768441141011e-01 gamma1 = 0.7819258362551702e-01 delta1 = 0.2210012187598900e-00 x = list(ref_el.vertices) x.extend([ (1 - alpha1, alpha1), (alpha1, 1 - alpha1), (0.0, 1 - alpha1), (0.0, alpha1), (alpha1, 0.0), (1 - alpha1, 0.0), ] # edge points ) x.extend([ (1 - alpha2, alpha2), (alpha2, 1 - alpha2), (0.0, 1 - alpha2), (0.0, alpha2), (alpha2, 0.0), (1 - alpha2, 0.0), ] # edge points ) x.extend([(beta1, beta1), (1 - 2 * beta1, beta1), (beta1, 1 - 2 * beta1)]) # points in center of cell x.extend([(beta2, beta2), (1 - 2 * beta2, beta2), (beta2, 1 - 2 * beta2)]) # points in center of cell x.extend([(beta3, beta3), (1 - 2 * beta3, beta3), (beta3, 1 - 2 * beta3)]) # points in center of cell x.extend([ (gamma1, delta1), (1 - gamma1 - delta1, delta1), (gamma1, 1 - gamma1 - delta1), (delta1, gamma1), (1 - gamma1 - delta1, gamma1), (delta1, 1 - gamma1 - delta1), ] # edge points ) w = arange(30, dtype=float64) w[0:3] = 0.7094239706792450e-03 w[3:9] = 0.6190565003676629e-02 w[9:15] = 0.3480578640489211e-02 w[15:18] = 0.3453043037728279e-01 w[18:21] = 0.4590123763076286e-01 w[21:24] = 0.1162613545961757e-01 w[24:30] = 0.2727857596999626e-01 else: raise ValueError("Dimension not supported") # Return scheme return QuadratureRule(T, x, w)