コード例 #1
0
def do_evaluate_unlabeled(pred_config, output_file, reuse=True):
    """Evaluate unlabled data."""

    for i, dataset in enumerate(cfg.DATA.VAL):
        output = output_file + '-' + dataset
        if not os.path.isfile(output) or not reuse:
            if i == 0:
                num_tower = max(cfg.TRAIN.NUM_GPUS, 1)
                graph_funcs = MultiTowerOfflinePredictor(
                    pred_config, list(range(num_tower))).get_predictors()
            logger.info('Evaluating {} ...'.format(dataset))
            dataflows = [
                get_eval_dataflow(dataset, shard=k, num_shards=num_tower)
                for k in range(num_tower)
            ]
            all_results = multithread_predict_dataflow(dataflows, graph_funcs)
            eval_metrics = DatasetRegistry.get(
                dataset).eval_inference_results2(
                    all_results, output, threshold=cfg.TRAIN.CONFIDENCE)
        else:
            all_results = json.load(open(output, 'r'))
            eval_metrics = DatasetRegistry.get(
                dataset).eval_inference_results2(
                    all_results,
                    output,
                    threshold=cfg.TRAIN.CONFIDENCE,
                    metric_only=True)

        with open(output + '_cocometric.json', 'w') as f:
            json.dump(eval_metrics, f)
コード例 #2
0
def get_eval_unlabeled_dataflow(name,
                                shard=0,
                                num_shards=1,
                                return_size=False):
    """
    Return a training dataflow. Each datapoint consists of the following:

    An image: (h, w, 3),

    1 or more pairs of (anchor_labels, anchor_boxes):
    anchor_labels: (h', w', NA)
    anchor_boxes: (h', w', NA, 4)

    gt_boxes: (N, 4)
    gt_labels: (N,)

    If MODE_MASK, gt_masks: (N, h, w)
    """
    if isinstance(name, (list, tuple)) and len(name) > 1:
        if "VOC" not in name[0]:
            assert "VOC" not in name[
                1], "VOC has to be put before coco in cfg.DATA.TRAIN"
        roidbs = []
        for x in name:
            _roidbs = DatasetRegistry.get(x).training_roidbs()
            print_class_histogram(_roidbs)
            roidbs.extend(_roidbs)
        # roidbs = list(itertools.chain.from_iterable(DatasetRegistry.get(x).training_roidbs() for x in name))
        logger.info("Merged roidbs from {}".format(name))
        print_class_histogram(roidbs)
    else:
        if isinstance(name, (list, tuple)):
            name = name[0]
        roidbs = DatasetRegistry.get(name).training_roidbs()
        print_class_histogram(roidbs)

    num_imgs = len(roidbs)
    img_per_shard = num_imgs // num_shards
    img_range = (shard * img_per_shard, (shard + 1) *
                 img_per_shard if shard + 1 < num_shards else num_imgs)
    logger.info("Found {} images for inference.".format(img_range[1] -
                                                        img_range[0] + 1))

    # no filter for training
    ds = DataFromListOfDict(roidbs[img_range[0]:img_range[1]],
                            ["file_name", "image_id"])

    def f(fname):
        im = cv2.imread(fname, cv2.IMREAD_COLOR)
        assert im is not None, fname
        return im

    ds = MapDataComponent(ds, f, 0)
    # Evaluation itself may be multi-threaded, therefore don't add prefetch
    # here.

    if return_size:
        return ds, num_imgs
    return ds
コード例 #3
0
def get_train_dataflow():
    """
    Return a training dataflow. Each datapoint consists of the following:

    An image: (h, w, 3),

    1 or more pairs of (anchor_labels, anchor_boxes):
    anchor_labels: (h', w', NA)
    anchor_boxes: (h', w', NA, 4)

    gt_boxes: (N, 4)
    gt_labels: (N,)

    If MODE_MASK, gt_masks: (N, h, w)
    """

    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs)

    # Filter out images that have no gt boxes, but this filter shall not be applied for testing.
    # The model does support training with empty images, but it is not useful for COCO.
    num = len(roidbs)
    roidbs = list(
        filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0,
               roidbs))
    logger.info(
        "Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}"
        .format(num - len(roidbs), len(roidbs)))

    ds = DataFromList(roidbs, shuffle=True)
    preprocess = TrainingDataPreprocessorAug(cfg)

    if cfg.DATA.NUM_WORKERS > 0:
        if cfg.TRAINER == "horovod":
            buffer_size = cfg.DATA.NUM_WORKERS * 10  # one dataflow for each process, therefore don't need large buffer
            ds = MultiThreadMapData(ds,
                                    cfg.DATA.NUM_WORKERS,
                                    preprocess,
                                    buffer_size=buffer_size)
            # MPI does not like fork()
        else:
            buffer_size = cfg.DATA.NUM_WORKERS * 20
            ds = MultiProcessMapData(ds,
                                     cfg.DATA.NUM_WORKERS,
                                     preprocess,
                                     buffer_size=buffer_size)
    else:
        ds = MapData(ds, preprocess)
    return ds
コード例 #4
0
def visualize_dataflow2(cfg, unlabled2017_used=True, VISPATH="./", maxvis=50):
    """Visualize the dataflow with labeled and unlabled strong augmentation."""
    def prase_name(x):
        if not unlabled2017_used:
            return x + "-unlabeled"
        else:  # return coco2017 unlabeled data
            return "coco_unlabeled2017"

    def remove_no_box_data(_roidbs, filter_fn):
        num = len(_roidbs)
        _roidbs = filter_fn(_roidbs)
        logger.info(
            "Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}"
            .format(num - len(_roidbs), len(_roidbs)))
        return _roidbs

    pseudo_path = os.path.join(os.environ["PSEUDO_PATH"], "pseudo_data.npy")
    pseudo_targets = dd.io.load(pseudo_path)

    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    roidbs_u = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(prase_name(x)).training_roidbs()
            for x in cfg.DATA.TRAIN))
    roidbs = remove_no_box_data(
        roidbs, lambda x: list(
            filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0, x))
    )
    roidbs_u = remove_no_box_data(
        roidbs_u, lambda x: list(
            filter(
                lambda img: len(pseudo_targets[img["image_id"]]["boxes"]) > 0,
                x)))

    print_class_histogram(roidbs)
    print_class_histogram(roidbs_u)

    preprocess = TrainingDataPreprocessorSSlAug(
        cfg, confidence=cfg.TRAIN.CONFIDENCE, pseudo_targets=pseudo_targets)
    for jj, (rob, robu) in tqdm(enumerate(zip(roidbs, roidbs_u))):
        data = preprocess((rob, robu))
        # import pdb; pdb.set_trace()
        nn = len(pseudo_targets[robu["image_id"]]["boxes"])
        if data is None or len(data["gt_boxes_strong"]) == 0:
            print("empty annotation, {} (original {})".format(jj, nn))
            continue

        ims = viz.draw_boxes(data["image"], data["gt_boxes"],
                             [str(a) for a in data["gt_labels"]])

        ims_t = viz.draw_boxes(data["image_strong"], data["gt_boxes_strong"], [
            str(a)
            for a in data["gt_labels_strong"][:len(data["gt_boxes_strong"])]
        ])
        ims = cv2.resize(ims, (ims_t.shape[1], ims_t.shape[0]))
        vis = np.concatenate((ims, ims_t), axis=1)
        if not os.path.exists(
                os.path.dirname(
                    os.path.join(VISPATH, "result_{}.jpeg".format(jj)))):
            os.makedirs(
                os.path.dirname(
                    os.path.join(VISPATH, "result_{}.jpeg".format(jj))))
        assert cv2.imwrite(os.path.join(VISPATH, "result_{}.jpeg".format(jj)),
                           vis)

        if jj > maxvis:
            break
コード例 #5
0
def get_train_dataflow_w_unlabeled(load_path):
    """
    Return a training dataflow. Each datapoint consists of the following:

    An image: (h, w, 3),

    1 or more pairs of (anchor_labels, anchor_boxes):
    anchor_labels: (h', w', NA)
    anchor_boxes: (h', w', NA, 4)

    gt_boxes: (N, 4)
    gt_labels: (N,)

    If MODE_MASK, gt_masks: (N, h, w)
    """
    assert os.path.isfile(load_path), "{} does not find".format(load_path)
    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs)

    if "VOC" in cfg.DATA.TRAIN[0]:
        roidbs_u = list(
            itertools.chain.from_iterable(
                DatasetRegistry.get(x).training_roidbs()
                for x in cfg.DATA.UNLABEL))
        unlabled2017_used = False
    else:
        unlabled2017_used = np.any(["@" not in x for x in cfg.DATA.TRAIN])

        def prase_name(x):
            if not unlabled2017_used:
                assert "@" in load_path, (
                    "{}: Did you use wrong pseudo_data.py for "
                    "this model?").format(load_path)
                return x + "-unlabeled"
            else:
                # return coco2017 unlabeled data
                return "coco_unlabeled2017"

        roidbs_u = list(
            itertools.chain.from_iterable(
                DatasetRegistry.get(prase_name(x)).training_roidbs()
                for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs_u)

    # Filter out images that have no gt boxes, but this filter shall not be applied for testing.
    # The model does support training with empty images, but it is not useful for COCO.
    def remove_no_box_data(_roidbs, filter_fn, dset):
        num = len(_roidbs)
        _roidbs = filter_fn(_roidbs)
        logger.info(
            "Filtered {} images which contain no non-crowd groudtruth boxes. Total {} #images for training: {}"
            .format(num - len(_roidbs), dset, len(_roidbs)))
        return _roidbs

    roidbs = remove_no_box_data(
        roidbs, lambda x: list(
            filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0, x)
        ), "labeled")
    # load unlabeled
    if unlabled2017_used:
        assert "@" not in load_path, "Did you use the wrong pseudo path"
    pseudo_targets = dd.io.load(load_path)
    logger.info("Loaded {} pseudo targets from {}".format(
        len(pseudo_targets), load_path))
    roidbs_u = remove_no_box_data(
        roidbs_u, lambda x: list(
            filter(
                lambda img: len(pseudo_targets[img["image_id"]]["boxes"]) > 0,
                x)), "unlabeled")
    preprocess = TrainingDataPreprocessorSSlAug(
        cfg, confidence=cfg.TRAIN.CONFIDENCE, pseudo_targets=pseudo_targets)

    ds = DataFrom2List(roidbs, roidbs_u, shuffle=True)

    if cfg.DATA.NUM_WORKERS > 0:
        if cfg.TRAINER == "horovod":
            buffer_size = cfg.DATA.NUM_WORKERS * 10
            ds = MultiThreadMapData(ds,
                                    cfg.DATA.NUM_WORKERS,
                                    preprocess,
                                    buffer_size=buffer_size)
        else:
            buffer_size = cfg.DATA.NUM_WORKERS * 20
            ds = MultiProcessMapData(ds,
                                     cfg.DATA.NUM_WORKERS,
                                     preprocess,
                                     buffer_size=buffer_size)
    else:
        ds = MapData(ds, preprocess)
    return ds