def build_correct_setup(): search_space = search_spaces.TextClassifierSearchSpace() search_strategy = search_strategies.RandomSearch() search_space.add_budget(param.Budget.GENERATIONS, 10) search_space.add_evaluation_metric(param.EvaluationMetric.MICRO_F1_SCORE) search_space.add_optimization_value(param.OptimizationValue.DEV_SCORE) search_space.add_parameter(param.ModelTrainer.LEARNING_RATE, options=[0.01, 0.05, 0.1]) search_space.add_parameter(param.DocumentRNNEmbeddings.HIDDEN_SIZE, options=[128, 256, 512]) search_space.add_parameter(param.DocumentRNNEmbeddings.WORD_EMBEDDINGS, options=[['glove'], ['en'], ['en', 'glove']]) return search_space, search_strategy
from FlairParamOptimizer import search_strategies, search_spaces, orchestrator import FlairParamOptimizer.parameter_listings.parameters_for_user_input as param from flair.datasets import SENTEVAL_SUBJ from torch.optim import SGD, Adam # 1.) Define your corpus corpus = SENTEVAL_SUBJ() # 2.) create an search space search_space = search_spaces.TextClassifierSearchSpace() search_strategy = search_strategies.RandomSearch() # 3.) depending on your task add the respective parameters you want to optimize over search_space.add_budget(param.Budget.TIME_IN_H, 24) search_space.add_evaluation_metric(param.EvaluationMetric.MICRO_F1_SCORE) search_space.add_optimization_value(param.OptimizationValue.DEV_SCORE) search_space.add_max_epochs_per_training_run(15) #Depending on your downstream task, add embeddings and specify these with the respective Parameters below search_space.add_parameter(param.ModelTrainer.LEARNING_RATE, options=[0.01, 0.05, 0.1]) search_space.add_parameter(param.ModelTrainer.MINI_BATCH_SIZE, options=[16, 32, 64]) search_space.add_parameter(param.ModelTrainer.ANNEAL_FACTOR, options=[0.25, 0.5]) search_space.add_parameter(param.ModelTrainer.OPTIMIZER, options=[SGD, Adam]) search_space.add_parameter(param.Optimizer.WEIGHT_DECAY, options=[1e-2, 0]) #Define parameters for document embeddings RNN search_space.add_parameter(param.DocumentRNNEmbeddings.HIDDEN_SIZE, options=[128, 256, 512])
from FlairParamOptimizer import search_strategies, search_spaces, orchestrator import FlairParamOptimizer.parameter_listings.parameters_for_user_input as param from flair.datasets import SENTEVAL_SST_GRANULAR from torch.optim import SGD, Adam # 1.) Define your corpus corpus = SENTEVAL_SST_GRANULAR() # 2.) create an search space search_space = search_spaces.TextClassifierSearchSpace(multi_label=True) search_strategy = search_strategies.RandomSearch() # 3.) depending on your task add the respective parameters you want to optimize over search_space.add_budget(param.Budget.TIME_IN_H, 24) search_space.add_evaluation_metric(param.EvaluationMetric.MICRO_F1_SCORE) search_space.add_optimization_value(param.OptimizationValue.DEV_SCORE) search_space.add_max_epochs_per_training_run(15) #Depending on your downstream task, add embeddings and specify these with the respective Parameters below search_space.add_parameter(param.ModelTrainer.LEARNING_RATE, options=[0.01, 0.05, 0.1]) search_space.add_parameter(param.ModelTrainer.MINI_BATCH_SIZE, options=[16, 32, 64]) search_space.add_parameter(param.ModelTrainer.ANNEAL_FACTOR, options=[0.25, 0.5]) search_space.add_parameter(param.ModelTrainer.OPTIMIZER, options=[SGD, Adam]) search_space.add_parameter(param.Optimizer.WEIGHT_DECAY, options=[1e-2, 0]) #Define parameters for document embeddings RNN search_space.add_parameter(param.DocumentRNNEmbeddings.HIDDEN_SIZE, options=[128, 256, 512])