def test_load_pth(): """"Testing the model load functionality""" model_name = "Test_CPU" device = 'cpu' path = "Results/Pths/Univariate/" model = model_load(model_name=model_name, device=device, path=path) assert isinstance(model, LSTM)
def test_evaluate(): data_X = rand(500, 132, 1) data_y = rand(500, 1) device = 'cpu' model = model_load("Test_CPU", device, path="Results/Pths/Univariate/") model.device = device model.to(device) learning = DeepLearning(model=model, data_X=data_X, data_y=data_y, optimiser=Adam(model.parameters())) learning.train_val_test() learning.create_data_loaders() assert learning.evaluate(learning.model, learning.test_loader) < 1e6
def test_mtl(): """Check that an output is obtained for MTL model""" data_X = rand(100, 132, 7) data_y = rand(100, 5) device = 'cpu' model = model_load("Test_MTL_CPU", device, path="Results/Pths/MTL/") model.device = device model.to(device) learning = DeepLearning(model=model, data_X=data_X, data_y=data_y, optimiser=Adam(model.parameters()), n_epochs=1, debug=False) learning.train_val_test() learning.create_data_loaders() learning.training_wrapper() assert learning.best_val_score < np.inf
def test_validate(): """Check that an output is obtained for single task mode;""" data_X = rand(10, 132, 1) data_y = rand(10, 1) device = 'cpu' model = model_load("Test_CPU", device, path="Results/Pths/Univariate/") model.device = device model.to(device) learning = DeepLearning(model=model, data_X=data_X, data_y=data_y, optimiser=Adam(model.parameters()), n_epochs=1, disp_freq=1e6, fig_disp_freq=1e6) learning.train_val_test() learning.training_wrapper() assert learning.best_val_score < np.inf
def test_train_val_test(): """"Checking that the deeplearning class splits the data correctly""" model_name = "Test_CPU" device = 'cpu' path = "Results/Pths/Univariate/" model = model_load(model_name=model_name, device=device, path=path) data_X = rand(100, 20, 5) data_y = rand(100, 5) learning = DeepLearning(model=model, data_X=data_X, data_y=data_y, optimiser=Adam(model.parameters())) learning.train_val_test() assert list(learning.X_train.shape) == [60, 20, 5] assert list(learning.X_val.size()) == [20, 20, 5] assert list(learning.X_test.shape) == [20, 20, 5]