def plh_sum_proc(): """Sum all datasets contained in plot 3""" from Reduction import reduction from Formats import output filename = str(plh_file.value) datasets = Plot3.ds approach = str(plh_sum_type.value) if approach == 'Ideal': newds = reduction.sum_datasets(datasets) send_to_plot(newds,Plot2,add=False) else: newds = reduction.merge_datasets(datasets) if approach == 'Cluster': cluster = float(plh_cluster.value) if cluster > 0: newds,info_string = reduction.debunch(newds,(cluster,'')) send_to_plot(newds,Plot2,add=False) n_logger.log_plot(Plot2, footer = Plot2.title) # Write to file if filename != '': output.write_cif_data(newds,filename) if output_xyd.value: output.write_xyd_data(newds,filename) if output_fxye.value: output.write_fxye_data(newds,filename) if output_topas.value: output.write_xyd_data(newds,filename,comment_char="!")
def plh_sum_proc(): """Sum all datasets contained in plot 3""" from Reduction import reduction from Formats import output filename = str(plh_file.value) datasets = Plot3.ds approach = str(plh_sum_type.value) if approach == 'Ideal': newds = reduction.sum_datasets(datasets) send_to_plot(newds, Plot2, add=False) else: newds = reduction.merge_datasets(datasets) if approach == 'Cluster': cluster = float(plh_cluster.value) if cluster > 0: newds = reduction.debunch(newds, cluster) send_to_plot(newds, Plot2, add=False) # Write to file if filename != '': output.write_cif_data(newds, filename) if output_xyd.value: output.write_xyd_data(newds, filename) if output_fxye.value: output.write_fxye_data(newds, filename)
def plh_sum_proc(): """Sum all datasets contained in plot 3""" from Reduction import reduction from Formats import output filename = str(plh_file.value) datasets = Plot3.ds approach = str(plh_sum_type.value) if approach == 'Ideal': newds = reduction.sum_datasets(datasets) send_to_plot(newds,Plot2,add=False) else: newds = reduction.merge_datasets(datasets) if approach == 'Cluster': cluster = float(plh_cluster.value) if cluster > 0: newds = reduction.debunch(newds,cluster) send_to_plot(newds,Plot2,add=False) # Write to file if filename != '': output.write_cif_data(newds,filename) if output_xyd.value: output.write_xyd_data(newds,filename) if output_fxye.value: output.write_fxye_data(newds,filename)
def __run_script__(fns): from Reduction import reduction, AddCifMetadata from os.path import basename from os.path import join import os, re import time #how fast are we going? from Formats import output elapsed = time.clock() print 'Started working at %f' % (time.clock() - elapsed) df.datasets.clear() # save user preferences prof_names, prof_values = save_user_prefs() # store current Git versions for data output code_versions = { "GUI": __UI_gitversion[4:-1], "Reduction library": reduction.gitversion[4:-1] } # check input if (fns is None or len(fns) == 0): print 'no input datasets' return # pre-check that we can write the result # output_destination = out_folder.value output_destination = get_save_path() if output_xyd.value or output_fxye.value: if not os.access(output_destination, os.W_OK): open_error("Unable to write to folder %s" % output_destination) return # check if input needs to be normalized if norm_apply.value: # norm_ref is the source of information for normalisation # norm_tar is the value norm_ref should become, # by multiplication. If 'auto', the maximum value of norm_ref # for the first dataset is used, otherwise any number may be entered. norm_ref = str(norm_reference.value) if norm_ref.strip() == '': open_error( "You have asked to apply normalisation but not specified any normalisation reference" ) return norm_tar = str(norm_target).lower() # check if normalization target needs to be determined if len(norm_tar) == 0: norm_ref = None norm_tar = None print 'WARNING: no reference for normalization was specified' elif norm_tar == 'auto': # set flag norm_tar = -1 # iterate through input datasets location = norm_table[norm_ref] print 'utilized reference value for "' + norm_ref + '" is:', norm_tar # use provided reference value else: norm_tar = float(norm_tar) else: norm_ref = None norm_tar = None # check if bkg-map needs to be loaded if bkg_apply.value: if not bkg_map.value: bkg = None print 'WARNING: no bkg-map was specified' else: bkg = Dataset(str(bkg_map.value)) else: bkg = None # check if eff-map needs to be loaded if eff_apply.value: if not eff_map.value: eff = None print 'WARNING: no eff-map was specified' else: eff_map_canonical = get_calibration_path() + '/' + eff_map.value if eff_map_canonical[0:5] != 'file:': eff_map_canonical = 'file:' + eff_map_canonical if not eff_map_canonical in eff_map_cache: try: eff_map_cache[ eff_map_canonical] = reduction.read_efficiency_cif( eff_map_canonical) except: open_error("Failed to read efficiency file %s" % eff_map_canonical) return else: print 'Found in cache ' + ` eff_map_canonical ` eff = eff_map_cache[eff_map_canonical] else: eff = None # check if vertical tube correction needs to be loaded if vtc_apply.value: if not vtc_file.value: vtc = None print 'WARNING: no vtc-file was specified' else: vtc = get_calibration_path() + '/' + str(vtc_file.value) else: vtc = None # check if horizontal tube correction needs to be loaded if htc_apply.value: if not htc_file.value: htc = None print 'WARNING: no htc-file was specified' else: htc = get_calibration_path() + '/' + str(htc_file.value) else: htc = None reduced_files = [] # iterate through input datasets # note that the normalisation target (an arbitrary number) is set by # the first dataset unless it has already been specified. for fn in fns: # load dataset ds = df[fn] # extract basic metadata ds = AddCifMetadata.extract_metadata(ds, codeversions=code_versions) AddCifMetadata.store_reduction_preferences(ds, prof_names, prof_values) # remove redundant dimensions and convert to floating point rs = ds.get_reduced() * 1.0 rs.copy_cif_metadata(ds) # check if normalized is required if norm_ref: ds, norm_tar = reduction.applyNormalization( rs, reference=norm_table[norm_ref], target=norm_tar) else: ds = rs if bkg: ds = reduction.getBackgroundCorrected(ds, bkg, norm_table[norm_ref], norm_tar) print 'Finished normalisation, background subtraction at %f' % ( time.clock() - elapsed) # check if vertical tube correction is required if vtc: ds = reduction.getVerticallyCorrected(ds, vtc) print 'Finished vertical offset correction at %f' % (time.clock() - elapsed) # check if efficiency correction is required if eff: ds = reduction.getEfficiencyCorrected(ds, eff) print 'Finished efficiency correction at %f' % (time.clock() - elapsed) # Before fiddling with axes, get the ideal stepsize stepsize = reduction.get_stepsize(ds) print 'Ideal stepsize determined to be %f' % stepsize # check if horizontal tube correction is required if htc: ds = reduction.getHorizontallyCorrected(ds, htc) print 'Finished horizontal correction at %f' % (time.clock() - elapsed) # Stitching. If we are recalculating gain, this is purely for # informational purposes. We don't want to take the 100x time penalty of # multiplying a 2D array by the gain factor for each tube, so we # stitch on a 1D array after doing the gain re-refinement. if ds.ndim > 2: stitched = reduction.getStitched(ds, ignore=str(asm_drop_frames.value)) # Display dataset print 'Finished stitching at %f' % (time.clock() - elapsed) Plot1.set_dataset(stitched) Plot1.title = stitched.title # check if we are recalculating gain if regain_apply.value: bottom = int(vig_lower_boundary.value) top = int(vig_upper_boundary.value) cs, gain, esds, chisquared, no_overlaps = reduction.do_overlap( ds, regain_iterno.value, bottom=bottom, top=top, exact_angles=htc, drop_frames=str(asm_drop_frames.value)) if cs is not None: print 'Have new gains at %f' % (time.clock() - elapsed) fg = Dataset(gain) fg.var = esds # set horizontal axis (ideal values) # Plot4.set_dataset(Dataset(chisquared)) #chisquared history # Plot5.set_dataset(fg) #final gain plot else: open_error( "Cannot do gain recalculation as the scan ranges do not overlap." ) return if not vig_apply_rescale.value: norm_const = -1.0 else: norm_const = float(vig_rescale_target.value) # set the cluster value if str(vig_cluster.value) in ['Merge', 'Sum']: cluster = (stepsize * 0.6, str(vig_cluster.value) ) #60 percent of ideal else: cluster = (0.0, 'None') if not regain_apply.value: #already done final_result = reduction.getVerticalIntegrated( stitched, axis=0, normalization=norm_const, cluster=cluster, bottom=int(vig_lower_boundary.value), top=int(vig_upper_boundary.value)) print 'Finished vertical integration at %f' % (time.clock() - elapsed) else: if str(vig_cluster.value ) == 'Sum': #simulate a sum for the gain recalculated value cs *= no_overlaps info_string = "\nFinal values were multiplied by %d to simulate summation of individual points." % no_overlaps cs.add_metadata("_pd_proc_info_data_reduction", info_string, append=True) final_result = cs # Display reduced dataset send_to_plot(final_result, Plot2) if copy_acc.value: #user wants us to accumulate it plh_copy_proc() # Output datasets # Calculate inserted string: %s for sample name, %t for temperature stem = str(output_stem.value) stem = re.sub(r'[^\w+=()*^@~:{}\[\].%-]', '_', stem) if '%s' in stem: samplename = final_result.harvest_metadata( "CIF")['_pd_spec_special_details'] name_front = samplename.split()[0] stem = stem.replace('%s', name_front) if '%t' in stem: temperature = 'Unknown_temperature' stem = stem.replace('%t', temperature) print 'Filename stem is now ' + stem filename_base = join(get_save_path(), basename(str(fn))[:-7] + '_' + stem) if output_xyd.value or output_fxye.value: #write CIF if other files written output.write_cif_data(final_result, filename_base) reduced_files.append(filename_base + '.cif') if output_xyd.value: output.write_xyd_data(final_result, filename_base, codeversions=code_versions) reduced_files.append(filename_base + '.xyd') if output_fxye.value: output.write_fxye_data(final_result, filename_base, codeversions=code_versions) reduced_files.append(filename_base + '.xye') # ds.save_copy(join(str(out_folder.value), 'reduced_' + basename(str(fn)))) print 'Finished writing data at %f' % (time.clock() - elapsed) if len(reduced_files) > 0: zip_files(reduced_files, 'Echidna_rd_' + str(int(time.time()))[2:] + '.zip')
def __run_script__(fns): from Reduction import reduction, AddCifMetadata from os.path import basename from os.path import join from Formats import output import re df.datasets.clear() # save user preferences prof_names,prof_values = save_user_prefs() # check input if (fns is None or len(fns) == 0) : print 'no input datasets' return # set the title for Plot2 # Plot2.title = 'Plot 2' # check if input needs to be normalized if norm_apply.value: # norm_ref is the source of information for normalisation # norm_tar is the value norm_ref should become, # by multiplication. If 'auto', the maximum value of norm_ref # for the first dataset is used, otherwise any number may be entered. norm_ref = str(norm_reference.value) norm_tar = norm_target # check if normalization target needs to be determined if len(norm_tar) == 0: norm_ref = None norm_tar = None print 'WARNING: no reference for normalization was specified' elif norm_tar == 'auto': # set flag norm_tar = -1 # iterate through input datasets location = norm_table[norm_ref] print 'utilized reference value for "' + norm_ref + '" is:', norm_tar # use provided reference value else: norm_tar = float(norm_tar) else: norm_ref = None norm_tar = None # check if bkg-map needs to be loaded if bkg_apply.value: if not bkg_map.value: bkg = None print 'WARNING: no bkg-map was specified' else: bkg = Dataset(str(bkg_map.value)) # to avoid complaints in routines that expect it reduction.AddCifMetadata.add_metadata_methods(bkg) else: bkg = None # check if eff-map needs to be loaded if eff_apply.value: if not eff_map.value: eff = None print 'WARNING: no eff-map was specified' else: eff = Dataset(str(eff_map.value)) else: eff = None # Check for rescale if vig_apply_rescale.value: vig_normalisation = float(vig_rescale_target.value) else: vig_normalisation = -1 group_val = grouping_options[str(output_grouping.value)] # iterate through input datasets # note that the normalisation target (an arbitrary number) is set by # the first dataset unless it has already been specified. for fn in fns: # load dataset ds = df[fn] # extract basic metadata ds = reduction.AddCifMetadata.extract_metadata(ds) try: stth_value = sum(ds.stth)/len(ds.stth) # save for later all_stth = ds.stth[:] # also save for later except TypeError: stth_value = ds.stth if ds.ndim > 3: rs = ds.get_reduced() else: rs = ds rs = rs * 1.0 #convert to float rs.copy_cif_metadata(ds) # check if normalized is required if norm_ref: norm_tar = reduction.applyNormalization(rs, reference=norm_table[norm_ref], target=norm_tar) if bkg: rs = reduction.getBackgroundCorrected(rs, bkg, norm_table[norm_ref], norm_tar) # check if efficiency correction is required assert rs.dtype == Array([1.2,1.3]).dtype if eff: ds = reduction.getEfficiencyCorrected(rs, eff) else: ds = rs # Calculate inserted string: %s for sample name, %t for temperature stem = str(output_stem.value) stem = re.sub(r'[^\w+=()*^@~:{}\[\].%-]','_',stem) if '%s' in stem: samplename = ds.harvest_metadata("CIF")['_pd_spec_special_details'] name_front = re.sub(r'[^\w+=()*^@~:{}\[\].%-]','_',samplename) stem = stem.replace('%s',name_front) if '%t1' in stem: # get tc1 temperature = df[fn]["/entry1/sample/tc1/sensor/sensorValueA"] print `temperature` try: avetemp = sum(temperature)/len(temperature) except TypeError: avetemp = temperature stem = stem.replace('%t1',"%.0fK" % avetemp) print 'Filename stem is now ' + stem # restrict output set of frames restrict_spec = str(output_restrict.value) if ':' in restrict_spec: first,last = map(int,restrict_spec.split(':')) start_frames = last current_frame_start = first frameno = first else: start_frames = len(ds) current_frame_start = 0 frameno = 0 # perform grouping of sequential input frames while frameno <= start_frames: if group_val is None: target_val = "" final_frame = start_frames-1 frameno = start_frames else: stth_value = all_stth[current_frame_start] target_val = ds[group_val][current_frame_start] try: if ds[frameno][group_val] == target_val: frameno += 1 continue except: #Assume an exception is due to too large frameno print 'Exiting frame loop due to error' # frameno is the first frame with the wrong values cs = ds.get_section([current_frame_start,0,0],[frameno-current_frame_start,ds.shape[1],ds.shape[2]]) cs.copy_cif_metadata(ds) print 'Summing frames from %d to %d, shape %s, start 2th %f' % (current_frame_start,frameno-1,cs.shape,stth_value) if target_val != "": print 'Corresponding to a target value of ' + `target_val` # sum the input frames print 'cs axes: ' + cs.axes[0].title + ' ' + cs.axes[1].title + ' ' + cs.axes[2].title # es = cs.intg(axis=0) es = reduction.getSummed(cs,applyStth=stth_value) # does axis correction as well es.copy_cif_metadata(cs) print 'es axes: ' + `es.axes[0].title` + es.axes[1].title Plot1.set_dataset(es) cs = reduction.getVerticalIntegrated(es, axis=0, normalization=vig_normalisation, bottom = int(vig_lower_boundary.value), top=int(vig_upper_boundary.value)) if target_val != "": cs.title = cs.title + "_" + str(target_val) try: send_to_plot(cs,Plot2,add=True,change_title=False) except IndexError: #catch error from GPlot send_to_plot(cs,Plot2,add=False,change_title=True) # Output datasets filename_base = join(str(out_folder.value),basename(str(fn))[:-7]+'_'+stem+"_"+str(target_val)) if output_cif.value: output.write_cif_data(cs,filename_base) if output_xyd.value: output.write_xyd_data(cs,filename_base) if output_fxye.value: output.write_fxye_data(cs,filename_base) #loop to next group of datasets current_frame_start = frameno frameno += 1
def __run_script__(fns): from Reduction import reduction,AddCifMetadata from os.path import basename from os.path import join import os,re import time #how fast are we going? from Formats import output num_step = 9 prog_bar.max = len(fns) * num_step prog_bar.selection = 1 elapsed = time.clock() print 'Started working at %f' % (time.clock()-elapsed) df.datasets.clear() # save user preferences prof_names,prof_values = save_user_prefs() # store current Git versions for data output code_versions = {"GUI":__UI_gitversion[4:-1], "Reduction library":reduction.gitversion[4:-1]} # check input if (fns is None or len(fns) == 0) : print 'no input datasets' return # pre-check that we can write the result output_destination = out_folder.value if output_xyd.value or output_fxye.value: if not os.access(output_destination,os.W_OK): open_error("Unable to write to folder %s" % output_destination) return # check if input needs to be normalized if norm_apply.value: # norm_ref is the source of information for normalisation # norm_tar is the value norm_ref should become, # by multiplication. If 'auto', the maximum value of norm_ref # for the first dataset is used, otherwise any number may be entered. norm_ref = str(norm_reference.value) if norm_ref.strip() == '': open_error("You have asked to apply normalisation but not specified any normalisation reference") return norm_tar = str(norm_target).lower() # check if normalization target needs to be determined if len(norm_tar) == 0: norm_ref = None norm_tar = None print 'WARNING: no reference for normalization was specified' elif norm_tar == 'auto': # set flag norm_tar = -1 # iterate through input datasets location = norm_table[norm_ref] print 'utilized reference value for "' + norm_ref + '" is:', norm_tar # use provided reference value else: norm_tar = float(norm_tar) else: norm_ref = None norm_tar = None # check if bkg-map needs to be loaded if bkg_apply.value: if not bkg_map.value: bkg = None print 'WARNING: no bkg-map was specified' else: bkg = Dataset(str(bkg_map.value)).get_reduced() else: bkg = None # check if eff-map needs to be loaded if eff_apply.value: if not eff_map.value: eff = None print 'WARNING: no eff-map was specified' else: eff_map_canonical = str(eff_map.value) if eff_map_canonical[0:5] != 'file:': eff_map_canonical = 'file:' + eff_map_canonical if not eff_map_canonical in eff_map_cache: try: eff_map_cache[eff_map_canonical] = reduction.read_efficiency_cif(eff_map_canonical) except: open_error("Failed to read efficiency file %s" % eff_map_canonical) return else: print 'Found in cache ' + `eff_map_canonical` eff = eff_map_cache[eff_map_canonical] else: eff = None # check if vertical tube correction needs to be loaded if vtc_apply.value: if not vtc_file.value: vtc = None print 'WARNING: no vtc-file was specified' else: vtc = str(vtc_file.value) else: vtc = None # check if horizontal tube correction needs to be loaded if htc_apply.value: if not htc_file.value: htc = None print 'WARNING: no htc-file was specified' else: htc = str(htc_file.value) else: htc = None # check if gain correction needs to be loaded regain_data = [] if regain_load.value: if not regain_load_filename.value: open_error("You have requested loading of gain correction from a file but no file has been specified") return rlf = str(regain_load_filename.value) regain_data = reduction.load_regain_values(rlf) # iterate through input datasets # note that the normalisation target (an arbitrary number) is set by # the first dataset unless it has already been specified. prog_bar.selection = 2 fn_idx = 0 for fn in fns: # load dataset ds = df[fn] if not norm_uniform.value: norm_tar = -1 #reinitialise try: prog_bar.selection = fn_idx * num_step # extract basic metadata print 'Code versions:' + `code_versions` ds = AddCifMetadata.extract_metadata(ds,codeversions=code_versions) AddCifMetadata.store_reduction_preferences(ds,prof_names,prof_values) # remove redundant dimensions and convert to floating point rs = ds.get_reduced()*1.0 rs.copy_cif_metadata(ds) # check if normalized is required if norm_ref: ds,norm_tar = reduction.applyNormalization(rs, reference=norm_table[norm_ref], target=norm_tar) else: ds = rs if bkg: AddCifMetadata.add_metadata_methods(bkg) ds = reduction.getBackgroundCorrected(ds, bkg, norm_table[norm_ref], norm_tar) print 'Finished normalisation, background subtraction at %f' % (time.clock()-elapsed) prog_bar.selection = fn_idx * num_step + 1 # check that we have the necessary dimensions dims = ds.shape if dims[1] != 128: rebin_factor = int(dims[1]/128) print 'Need to rebin from %d to 128, factor of %d; stand by...' % (dims[1],rebin_factor) ds = reduction.rebin(ds,axis=1,factor=rebin_factor) else: print 'No need to rebin, dataset shape is ' + repr(dims) # check if vertical tube correction is required if vtc: ds = reduction.getVerticallyCorrected(ds, vtc) print 'Finished vertical offset correction at %f' % (time.clock()-elapsed) prog_bar.selection = fn_idx * num_step + 2 # check if efficiency correction is required if eff: ds = reduction.getEfficiencyCorrected(ds, eff) print 'Finished efficiency correction at %f' % (time.clock()-elapsed) prog_bar.selection = fn_idx * num_step + 3 # Before fiddling with axes, get the ideal stepsize stepsize = reduction.get_stepsize(ds) print 'Ideal stepsize determined to be %f' % stepsize prog_bar.selection = fn_idx * num_step + 4 # check if horizontal tube correction is required if htc: ds = reduction.getHorizontallyCorrected(ds, htc) print 'Finished horizontal correction at %f' % (time.clock()-elapsed) prog_bar.selection = fn_idx * num_step + 5 # Stitching. If we are recalculating gain, this is purely for # informational purposes. We don't want to take the 100x time penalty of # multiplying a 2D array by the gain factor for each tube, so we # stitch using a 1D array after doing the gain re-refinement. drop_tubes = str(asm_drop_tubes.value) if ds.ndim > 2: # See if we are ignoring any tubes stitched = reduction.getStitched(ds,ignore=str(asm_drop_frames.value),drop_tubes=drop_tubes) # Display dataset print 'Finished stitching at %f' % (time.clock()-elapsed) prog_bar.selection = fn_idx * num_step + 6 Plot1.set_dataset(stitched) Plot1.title = stitched.title n_logger.log_plot(Plot1, footer = Plot1.title) # check if we are recalculating gain if regain_apply.value: bottom = int(vig_lower_boundary.value) top = int(vig_upper_boundary.value) dumpfile = None # if regain_dump_tubes.value: # dumpfile = filename_base+".tubes" cs,gain,esds,chisquared,no_overlaps = reduction.do_overlap(ds,regain_iterno.value,bottom=bottom,top=top, exact_angles=htc,drop_frames=str(asm_drop_frames.value),drop_tubes=drop_tubes,use_gains=regain_data,dumpfile=dumpfile, do_sum=regain_sum.value) if cs is not None: print 'Have new gains at %f' % (time.clock() - elapsed) fg = Dataset(gain) fg.var = esds**2 # set horizontal axis (ideal values) Plot4.set_dataset(Dataset(chisquared)) #chisquared history Plot5.set_dataset(fg) #final gain plot # now save the file if requested if regain_store.value and not regain_load.value: gain_comment = "Gains refined from file %s" % fn reduction.store_regain_values(str(regain_store_filename.value),gain,gain_comment) else: open_error("Cannot do gain recalculation as the scan ranges do not overlap.") return if not vig_apply_rescale.value: norm_const = -1.0 else: norm_const = float(vig_rescale_target.value) # set the cluster value if str(vig_cluster.value) in ['Merge','Sum']: cluster = (stepsize * 0.6,str(vig_cluster.value)) #60 percent of ideal else: cluster = (0.0,'None') if not regain_apply.value: #already done final_result = reduction.getVerticalIntegrated(stitched, axis=0, normalization=norm_const, cluster=cluster,bottom = int(vig_lower_boundary.value), top=int(vig_upper_boundary.value)) print 'Finished vertical integration at %f' % (time.clock()-elapsed) else: if str(vig_cluster.value) == 'Sum': #simulate a sum for the gain recalculated value cs *= no_overlaps info_string = "\nFinal values were multiplied by %d to simulate summation of individual points." % no_overlaps cs.add_metadata("_pd_proc_info_data_reduction",info_string,append=True) if norm_const > 0: #rescale requested but not performed reduction.rescale(cs,norm_const) final_result = cs prog_bar.selection = fn_idx * num_step + 7 # Display reduced dataset send_to_plot(final_result,Plot2) n_logger.log_plot(Plot2, footer = Plot2.title) if copy_acc.value: #user wants us to accumulate it plh_copy_proc() # Output datasets # Calculate inserted string: %s for sample name, %t for temperature stem = str(output_stem.value) stem = re.sub(r'[^\w+=()*^@~:{}\[\].%-]','_',stem) if '%s' in stem: samplename = final_result.harvest_metadata("CIF")['_pd_spec_special_details'] name_front = samplename.split()[0] stem = stem.replace('%s',name_front) if '%t' in stem: temperature = 'Unknown_temperature' stem = stem.replace('%t',temperature) print 'Filename stem is now ' + stem filename_base = join(str(out_folder.value),basename(str(fn))[:-7] + '_' + stem) if output_xyd.value or output_fxye.value or output_topas.value: #write CIF if other files written output.write_cif_data(final_result,filename_base) if output_xyd.value: add_header = output_naked.value output.write_xyd_data(final_result,filename_base,codeversions=code_versions,naked=add_header) if output_fxye.value: output.write_fxye_data(final_result,filename_base,codeversions=code_versions) if output_topas.value: output.write_xyd_data(final_result,filename_base,codeversions=code_versions,comment_char="!",extension='topas') # ds.save_copy(join(str(out_folder.value), 'reduced_' + basename(str(fn)))) print 'Finished writing data at %f' % (time.clock()-elapsed) prog_bar.selection = fn_idx * num_step + 8 fn_idx += 1 finally: df[fn].close() prog_bar.selection = 0
def __run_script__(fns): global Plot4,Plot5,Plot6 from Reduction import reduction,AddCifMetadata from os.path import basename from os.path import join import time #how fast are we going? from Formats import output elapsed = time.clock() print 'Started working at %f' % (time.clock()-elapsed) df.datasets.clear() # check input if (fns is None or len(fns) == 0) : print 'no input datasets' return # check if input needs to be normalized if norm_apply.value: # norm_ref is the source of information for normalisation # norm_tar is the value norm_ref should become, # by multiplication. If 'auto', the maximum value of norm_ref # for the first dataset is used, otherwise any number may be entered. norm_ref = str(norm_reference.value) norm_tar = str(norm_target.value).lower() # check if normalization target needs to be determined if len(norm_tar) == 0: norm_ref = None norm_tar = None print 'WARNING: no reference for normalization was specified' elif norm_tar == 'auto': # set flag norm_tar = -1 # iterate through input datasets location = norm_table[norm_ref] print 'utilized reference value for "' + norm_ref + '" is:', norm_tar # use provided reference value else: norm_tar = float(norm_tar) else: norm_ref = None norm_tar = None # check if eff-map needs to be loaded if eff_apply.value: if not eff_map.value: eff = None print 'WARNING: no eff-map was specified' else: eff_map_canonical = str(eff_map.value) if eff_map_canonical[0:5] != 'file:': eff_map_canonical = 'file:' + eff_map_canonical if not eff_map_canonical in eff_map_cache: eff_map_cache[eff_map_canonical] = reduction.read_efficiency_cif(eff_map_canonical) else: print 'Found in cache ' + `eff_map_canonical` eff = eff_map_cache[eff_map_canonical] else: eff = None # check if vertical tube correction needs to be loaded if vtc_apply.value: if not vtc_file.value: vtc = None print 'WARNING: no vtc-file was specified' else: vtc = str(vtc_file.value) else: vtc = None # iterate through input datasets # note that the normalisation target (an arbitrary number) is set by # the first dataset unless it has already been specified. for fn in fns: # load dataset ds = df[fn] # extract basic metadata ds = reduction.AddCifMetadata.extract_metadata(ds) # remove redundant dimensions rs = ds.get_reduced() rs.copy_cif_metadata(ds) # check if normalized is required if norm_ref: ds,norm_tar = reduction.applyNormalization(rs, reference=norm_table[norm_ref], target=norm_tar) print 'Finished normalisation at %f' % (time.clock()-elapsed) # check if vertical tube correction is required if vtc: ds = reduction.getVerticallyCorrected(ds, vtc) print 'Finished vertical offset correction at %f' % (time.clock()-elapsed) # check if efficiency correction is required if eff: ds = reduction.getEfficiencyCorrected(ds, eff) print 'Finished efficiency correction at %f' % (time.clock()-elapsed) # check if we are recalculating gain if regain_apply.value: b = ds.intg(axis=1).get_reduced() #reduce dimension ignore = regain_ignore.value #Ignore first two tubes # Determine pixels per tube interval tube_pos = ds.axes[-1] tubesep = abs(tube_pos[0]-tube_pos[-1])/(len(tube_pos)-1) tube_steps = ds.axes[0] bin_size = abs(tube_steps[0]-tube_steps[-1])/(len(tube_steps)-1) pixel_step = int(round(tubesep/bin_size)) bin_size = tubesep/pixel_step print '%f tube separation, %d steps before overlap, ideal binsize %f' % (tubesep,pixel_step,bin_size) # Reshape with individual sections summed c = b.reshape([b.shape[0]/pixel_step,pixel_step,b.shape[-1]]) print `b.shape` + "->" + `c.shape` # sum the individual unoverlapped sections d = c.intg(axis=1) e = d.transpose() # we skip the first tubes' data as it is all zero # Get an initial average to start with bottom = vig_lower_boundary.value top = vig_upper_boundary.value resummed = ds[:,bottom:top,:] resummed = resummed.intg(axis=1).get_reduced() first_gain = array.ones(len(b.transpose())-ignore) first_ave,x,first_var = overlap.apply_gain(resummed.transpose()[ignore:,:],1.0/resummed.transpose().var[ignore:,:],pixel_step,first_gain, calc_var=True) if regain_unit_weights.value is True: weights = array.ones_like(e[ignore:]) else: weights = 1.0/e[ignore:].var q= iterate_data(e[ignore:],weights,pixel_step=1,iter_no=int(regain_iterno.value)) # Now we actually apply the vertical limits requested f,x, varf = overlap.apply_gain(resummed.transpose()[ignore:,:],1.0/resummed.transpose().var[ignore:,:],pixel_step,q[0],calc_var=True) # Get error for full dataset esds = overlap.calc_error_new(b.transpose()[ignore:,:],f,q[0],pixel_step) f = Dataset(f) f.title = "After scaling" f.var = varf # construct the ideal axes axis = arange(len(f)) f.axes[0] = axis*bin_size + ds.axes[0][0] + ignore*pixel_step*bin_size f.copy_cif_metadata(ds) print `f.shape` + ' ' + `x.shape` Plot1.set_dataset(f) first_ave = Dataset(first_ave) first_ave.var = first_var first_ave.title = "Before scaling" first_ave.axes[0] = f.axes[0] Plot1.add_dataset(Dataset(first_ave)) Plot4.set_dataset(Dataset(q[4])) fg = Dataset(q[0]) fg.var = esds Plot5.set_dataset(fg) # show old esds fgold = Dataset(q[0]) fgold.var = q[5] Plot5.add_dataset(fgold) residual_map = Dataset(q[3]) try: Plot6.set_dataset(residual_map) except: pass print 'Finished regain calculation at %f' % (time.clock() - elapsed) # Output datasets filename_base = join(str(out_folder.value),str(output_stem.value) + basename(str(fn))[:-7]) if output_cif.value: output.write_cif_data(f,filename_base) if output_xyd.value: output.write_xyd_data(f,filename_base) if output_fxye.value: output.write_fxye_data(f,filename_base) print 'Finished writing data at %f' % (time.clock()-elapsed)