def SipStrategy(query, sipCollection, factGraph, derivedPreds, bindings={}, processedRules=None, network=None, debug=False, buildProof=False, memoizeMemory=None, proofLevel=1): """ Accordingly, we define a sip-strategy for computing the answers to a query expressed using a set of Datalog rules, and a set of sips, one for each adornment of a rule head, as follows... Each evaluation uses memoization (via Python decorators) but also relies on well-formed rewrites for using semi-naive bottom up method over large SPARQL data. """ memoizeMemory = memoizeMemory and memoizeMemory or {} queryLiteral = BuildUnitermFromTuple(query) processedRules = processedRules and processedRules or set() if bindings: # There are bindings. Apply them to the terms in the query queryLiteral.ground(bindings) if debug: print("%sSolving" % ('\t' * proofLevel), queryLiteral, bindings) # Only consider ground triple pattern isomorphism with matching bindings goalRDFStatement = queryLiteral.toRDFTuple() if queryLiteral in memoizeMemory: if debug: print("%sReturning previously calculated results for " % ('\t' * proofLevel), queryLiteral) for answers in memoizeMemory[queryLiteral]: yield answers elif AlphaNode(goalRDFStatement).alphaNetworkHash( True, skolemTerms=list(bindings.values())) in \ [AlphaNode(r.toRDFTuple()).alphaNetworkHash(True, skolemTerms=list(bindings.values())) for r in processedRules if AdornLiteral(goalRDFStatement).adornment == r.adornment]: if debug: print("%s Goal already processed..." % ('\t' * proofLevel)) else: isGround = literalIsGround(queryLiteral) if buildProof: ns = NodeSet(goalRDFStatement, network=network, identifier=BNode()) else: ns = None # adornedProgram = factGraph.adornedProgram queryPred = GetOp(queryLiteral) if sipCollection is None: rules = [] else: # For every rule head matching the query, we invoke the rule, # thus determining an adornment, and selecting a sip to follow rules = sipCollection.headToRule.get(queryPred, set()) if None in sipCollection.headToRule: # If there are second order rules, we add them # since they are a 'wildcard' rules.update(sipCollection.headToRule[None]) # maintained list of rules that haven't been processed before and # match the query validRules = [] # each subquery contains values for the bound arguments that are passed # through the sip arcs entering the node corresponding to that literal. For # each subquery generated, there is a set of answers. answers = [] # variableMapping = {} # Some TBox queries can be 'joined' together into SPARQL queries against # 'base' predicates via an RDF dataset # These atomic concept inclusion axioms can be evaluated together # using a disjunctive operator at the body of a horn clause # where each item is a query of the form uniPredicate(?X): # Or( uniPredicate1(?X1), uniPredicate2(?X), uniPredicate3(?X), ..) # In this way massive, conjunctive joins can be 'mediated' # between the stated facts and the top-down solver @parameterizedPredicate([i for i in derivedPreds]) def IsAtomicInclusionAxiomRHS(rule, dPreds): """ This is an atomic inclusion axiom with a variable (or bound) RHS: uniPred(?ENTITY) """ bodyList = list(iterCondition(rule.formula.body)) body = first(bodyList) return GetOp(body) not in dPreds and \ len(bodyList) == 1 and \ body.op == RDF.type atomicInclusionAxioms = list(filter( IsAtomicInclusionAxiomRHS, rules)) if atomicInclusionAxioms and len(atomicInclusionAxioms) > 1: if debug: print("\tCombining atomic inclusion axioms: ") pprint(atomicInclusionAxioms, sys.stderr) if buildProof: factStep = InferenceStep(ns, source='some RDF graph') ns.steps.append(factStep) axioms = [rule.formula.body for rule in atomicInclusionAxioms] # attempt to exaustively apply any available substitutions # and determine if query if fully ground vars = [v for v in GetArgs(queryLiteral, secondOrder=True) if isinstance(v, Variable)] openVars, axioms, _bindings = \ normalizeBindingsAndQuery(vars, bindings, axioms) if openVars: # mappings = {} # See if we need to do any variable mappings from the query literals # to the literals in the applicable rules query, rt = EDBQuery(axioms, factGraph, openVars, _bindings).evaluate(debug, symmAtomicInclusion=True) if buildProof: # FIXME: subquery undefined factStep.groundQuery = subquery for ans in rt: if buildProof: factStep.bindings.update(ans) memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(ans), ns)) yield ans, ns else: # All the relevant derivations have been explored and the result # is a ground query we can directly execute against the facts if buildProof: factStep.bindings.update(bindings) query, rt = EDBQuery(axioms, factGraph, _bindings).evaluate(debug, symmAtomicInclusion=True) if buildProof: # FIXME: subquery undefined factStep.groundQuery = subquery memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(rt), ns)) yield rt, ns rules = filter( lambda i: not IsAtomicInclusionAxiomRHS(i), rules) for rule in rules: # An exception is the special predicate ph; it is treated as a base # predicate and the tuples in it are those supplied for qb by # unification. headBindings = getBindingsFromLiteral( goalRDFStatement, rule.formula.head) # comboBindings = dict([(k, v) for k, v in itertools.chain( # bindings.items(), # headBindings.items())]) varMap = rule.formula.head.getVarMapping(queryLiteral) if headBindings and\ [term for term in rule.formula.head.getDistinguishedVariables(True) if varMap.get(term, term) not in headBindings]: continue # subQueryAnswers = [] # dontStop = True # projectedBindings = comboBindings.copy() if debug: print("%sProcessing rule" % ('\t' * proofLevel), rule.formula) if debug and sipCollection: print( "Sideways Information Passing (sip) graph for %s: " % queryLiteral) print(sipCollection.serialize(format='n3')) for sip in SIPRepresentation(sipCollection): print(sip) try: # Invoke the rule if buildProof: step = InferenceStep(ns, rule.formula) else: step = None for rt, step in\ invokeRule([headBindings], iter(iterCondition(rule.formula.body)), rule.sip, (proofLevel + 1, memoizeMemory, sipCollection, factGraph, derivedPreds, processedRules.union([ AdornLiteral(query)])), step=step, debug=debug): if rt: if isinstance(rt, dict): # We received a mapping and must rewrite it via # correlation between the variables in the rule head # and the variables in the original query (after applying # bindings) varMap = rule.formula.head.getVarMapping( queryLiteral) if varMap: rt = MakeImmutableDict( refactorMapping(varMap, rt)) if buildProof: step.bindings = rt else: if buildProof: step.bindings = headBindings validRules.append(rule) if buildProof: ns.steps.append(step) if isGround: yield True, ns else: memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(rt), ns)) yield rt, ns except RuleFailure: # Clean up failed antecedents if buildProof: if ns in step.antecedents: step.antecedents.remove(ns) if not validRules: # No rules matching, query factGraph for answers successful = False if buildProof: factStep = InferenceStep(ns, source='some RDF graph') ns.steps.append(factStep) if not isGround: subquery, rt = EDBQuery([queryLiteral], factGraph, [v for v in GetArgs(queryLiteral, secondOrder=True) if isinstance(v, Variable)], bindings).evaluate(debug) if buildProof: factStep.groundQuery = subquery for ans in rt: successful = True if buildProof: factStep.bindings.update(ans) memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(ans), ns)) yield ans, ns if not successful and queryPred not in derivedPreds: # Open query didn't return any results and the predicate # is ostensibly marked as derived predicate, so we have # failed memoizeMemory.setdefault( queryLiteral, set()).add((False, ns)) yield False, ns else: # All the relevant derivations have been explored and the result # is a ground query we can directly execute against the facts if buildProof: factStep.bindings.update(bindings) subquery, rt = EDBQuery([queryLiteral], factGraph, bindings).evaluate(debug) if buildProof: factStep.groundQuery = subquery memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(rt), ns)) yield rt, ns
def SipStrategy(query, sipCollection, factGraph, derivedPreds, bindings={}, processedRules=None, network=None, debug=False, buildProof=False, memoizeMemory=None, proofLevel=1): """ Accordingly, we define a sip-strategy for computing the answers to a query expressed using a set of Datalog rules, and a set of sips, one for each adornment of a rule head, as follows... Each evaluation uses memoization (via Python decorators) but also relies on well-formed rewrites for using semi-naive bottom up method over large SPARQL data. """ memoizeMemory = memoizeMemory and memoizeMemory or {} queryLiteral = BuildUnitermFromTuple(query) processedRules = processedRules and processedRules or set() if bindings: #There are bindings. Apply them to the terms in the query queryLiteral.ground(bindings) if debug: print("%sSolving" % ('\t' * proofLevel), queryLiteral, bindings) # Only consider ground triple pattern isomorphism with matching bindings goalRDFStatement = queryLiteral.toRDFTuple() if queryLiteral in memoizeMemory: if debug: print("%sReturning previously calculated results for " % \ ('\t' * proofLevel), queryLiteral) for answers in memoizeMemory[queryLiteral]: yield answers elif AlphaNode(goalRDFStatement).alphaNetworkHash( True, skolemTerms=list(bindings.values())) in \ [AlphaNode(r.toRDFTuple()).alphaNetworkHash(True, skolemTerms=list(bindings.values())) for r in processedRules if AdornLiteral(goalRDFStatement).adornment == \ r.adornment]: if debug: print("%s Goal already processed..." % \ ('\t' * proofLevel)) else: isGround = literalIsGround(queryLiteral) if buildProof: ns = NodeSet(goalRDFStatement, network=network, identifier=BNode()) else: ns = None # adornedProgram = factGraph.adornedProgram queryPred = GetOp(queryLiteral) if sipCollection is None: rules = [] else: #For every rule head matching the query, we invoke the rule, #thus determining an adornment, and selecting a sip to follow rules = sipCollection.headToRule.get(queryPred, set()) if None in sipCollection.headToRule: #If there are second order rules, we add them #since they are a 'wildcard' rules.update(sipCollection.headToRule[None]) #maintained list of rules that haven't been processed before and #match the query validRules = [] #each subquery contains values for the bound arguments that are passed #through the sip arcs entering the node corresponding to that literal. For #each subquery generated, there is a set of answers. answers = [] # variableMapping = {} #Some TBox queries can be 'joined' together into SPARQL queries against #'base' predicates via an RDF dataset #These atomic concept inclusion axioms can be evaluated together #using a disjunctive operator at the body of a horn clause #where each item is a query of the form uniPredicate(?X): #Or( uniPredicate1(?X1), uniPredicate2(?X), uniPredicate3(?X), ..) #In this way massive, conjunctive joins can be 'mediated' #between the stated facts and the top-down solver @parameterizedPredicate([i for i in derivedPreds]) def IsAtomicInclusionAxiomRHS(rule, dPreds): """ This is an atomic inclusion axiom with a variable (or bound) RHS: uniPred(?ENTITY) """ bodyList = list(iterCondition(rule.formula.body)) body = first(bodyList) return GetOp(body) not in dPreds and \ len(bodyList) == 1 and \ body.op == RDF.type atomicInclusionAxioms = list(filter(IsAtomicInclusionAxiomRHS, rules)) if atomicInclusionAxioms and len(atomicInclusionAxioms) > 1: if debug: print("\tCombining atomic inclusion axioms: ") pprint(atomicInclusionAxioms, sys.stderr) if buildProof: factStep = InferenceStep(ns, source='some RDF graph') ns.steps.append(factStep) axioms = [rule.formula.body for rule in atomicInclusionAxioms] #attempt to exaustively apply any available substitutions #and determine if query if fully ground vars = [ v for v in GetArgs(queryLiteral, secondOrder=True) if isinstance(v, Variable) ] openVars, axioms, _bindings = \ normalizeBindingsAndQuery(vars, bindings, axioms) if openVars: # mappings = {} #See if we need to do any variable mappings from the query literals #to the literals in the applicable rules query, rt = EDBQuery(axioms, factGraph, openVars, _bindings).evaluate( debug, symmAtomicInclusion=True) if buildProof: factStep.groundQuery = subquery for ans in rt: if buildProof: factStep.bindings.update(ans) memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(ans), ns)) yield ans, ns else: #All the relevant derivations have been explored and the result #is a ground query we can directly execute against the facts if buildProof: factStep.bindings.update(bindings) query, rt = EDBQuery(axioms, factGraph, _bindings).evaluate( debug, symmAtomicInclusion=True) if buildProof: factStep.groundQuery = subquery memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(rt), ns)) yield rt, ns rules = filter(lambda i: not IsAtomicInclusionAxiomRHS(i), rules) for rule in rules: #An exception is the special predicate ph; it is treated as a base #predicate and the tuples in it are those supplied for qb by unification. headBindings = getBindingsFromLiteral(goalRDFStatement, rule.formula.head) # comboBindings = dict([(k, v) for k, v in itertools.chain( # bindings.items(), # headBindings.items())]) varMap = rule.formula.head.getVarMapping(queryLiteral) if headBindings and\ [term for term in rule.formula.head.getDistinguishedVariables(True) if varMap.get(term, term) not in headBindings]: continue # subQueryAnswers = [] # dontStop = True # projectedBindings = comboBindings.copy() if debug: print("%sProcessing rule" % \ ('\t' * proofLevel), rule.formula) if debug and sipCollection: print("Sideways Information Passing (sip) graph for %s: " % queryLiteral) print(sipCollection.serialize(format='n3')) for sip in SIPRepresentation(sipCollection): print(sip) try: # Invoke the rule if buildProof: step = InferenceStep(ns, rule.formula) else: step = None for rt, step in\ invokeRule([headBindings], iter(iterCondition(rule.formula.body)), rule.sip, (proofLevel + 1, memoizeMemory, sipCollection, factGraph, derivedPreds, processedRules.union([ AdornLiteral(query)])), step=step, debug=debug): if rt: if isinstance(rt, dict): #We received a mapping and must rewrite it via #correlation between the variables in the rule head #and the variables in the original query (after applying #bindings) varMap = rule.formula.head.getVarMapping( queryLiteral) if varMap: rt = MakeImmutableDict( refactorMapping(varMap, rt)) if buildProof: step.bindings = rt else: if buildProof: step.bindings = headBindings validRules.append(rule) if buildProof: ns.steps.append(step) if isGround: yield True, ns else: memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(rt), ns)) yield rt, ns except RuleFailure: # Clean up failed antecedents if buildProof: if ns in step.antecedents: step.antecedents.remove(ns) if not validRules: #No rules matching, query factGraph for answers successful = False if buildProof: factStep = InferenceStep(ns, source='some RDF graph') ns.steps.append(factStep) if not isGround: subquery, rt = EDBQuery([queryLiteral], factGraph, [ v for v in GetArgs(queryLiteral, secondOrder=True) if isinstance(v, Variable) ], bindings).evaluate(debug) if buildProof: factStep.groundQuery = subquery for ans in rt: successful = True if buildProof: factStep.bindings.update(ans) memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(ans), ns)) yield ans, ns if not successful and queryPred not in derivedPreds: #Open query didn't return any results and the predicate #is ostensibly marked as derived predicate, so we have failed memoizeMemory.setdefault(queryLiteral, set()).add( (False, ns)) yield False, ns else: #All the relevant derivations have been explored and the result #is a ground query we can directly execute against the facts if buildProof: factStep.bindings.update(bindings) subquery, rt = EDBQuery([queryLiteral], factGraph, bindings).evaluate(debug) if buildProof: factStep.groundQuery = subquery memoizeMemory.setdefault(queryLiteral, set()).add( (prepMemiozedAns(rt), ns)) yield rt, ns
def invokeRule(priorAnswers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess=False, step=None, debug=False, buildProof=False): """ Continue invokation of rule using (given) prior answers and list of remaining body literals (& rule sip). If prior answers is a list, computation is split disjunctively [..] By combining the answers to all these subqueries, we generate answers for the original query involving the rule head Can also takes a PML step and updates it as it navigates the top-down proof tree (passing it on and updating it where necessary) """ assert not buildProof or step is not None proofLevel, memoizeMemory, sipCollection, \ factGraph, derivedPreds, processedRules = otherargs remainingBodyList = [i for i in bodyLiteralIterator] lazyGenerator = lazyGeneratorPeek(priorAnswers, 2) if lazyGenerator.successful: # There are multiple answers in this step, we need to call invokeRule # recursively for each answer, returning the first positive attempt success = False rt = None _step = None ansNo = 0 for priorAns in lazyGenerator: ansNo += 1 try: if buildProof: newStep = InferenceStep(step.parent, step.rule, source=step.source) newStep.antecedents = [ant for ant in step.antecedents] else: newStep = None for rt, _step in\ invokeRule([priorAns], iter([i for i in remainingBodyList]), sip, otherargs, priorBooleanGoalSuccess, newStep, debug=debug, buildProof=buildProof): if rt: yield rt, _step except RuleFailure: pass if not success: # None of prior answers were successful # indicate termination of rule processing raise RuleFailure( "Unable to solve either of %s against remainder of rule: %s" % ( ansNo, remainingBodyList)) # yield False, _InferenceStep(step.parent, step.rule, # source=step.source) else: lazyGenerator = lazyGeneratorPeek(lazyGenerator) projectedBindings = lazyGenerator.successful and first( lazyGenerator) or {} # First we check if we can combine a large group of subsequent body literals # into a single query # if we have a template map then we use it to further # distinguish which builtins can be solved via # cumulative SPARQl query - else we solve # builtins one at a time def sparqlResolvable(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return isinstance(literal, N3Builtin) and \ literal.uri in factGraph.templateMap def sparqlResolvableNoTemplates(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return False conjGroundLiterals = list( itertools.takewhile( hasattr(factGraph, 'templateMap') and sparqlResolvable or sparqlResolvableNoTemplates, remainingBodyList)) bodyLiteralIterator = iter(remainingBodyList) if len(conjGroundLiterals) > 1: # If there are literals to combine *and* a mapping from rule # builtins to SPARQL FILTER templates .. basePredicateVars = set( reduce(lambda x, y: x + y, [list(GetVariables(arg, secondOrder=True)) for arg in conjGroundLiterals])) if projectedBindings: openVars = basePredicateVars.intersection(projectedBindings) else: # We don't have any given bindings, so we need to treat # the body as an open query openVars = basePredicateVars queryConj = EDBQuery([copy.deepcopy(lit) for lit in conjGroundLiterals], factGraph, openVars, projectedBindings) query, answers = queryConj.evaluate(debug) if isinstance(answers, bool): combinedAnswers = {} rtCheck = answers else: if projectedBindings: combinedAnswers = (mergeMappings1To2(ans, projectedBindings, makeImmutable=True) for ans in answers) else: combinedAnswers = (MakeImmutableDict(ans) for ans in answers) combinedAnsLazyGenerator = lazyGeneratorPeek(combinedAnswers) rtCheck = combinedAnsLazyGenerator.successful if not rtCheck: raise RuleFailure( "No answers for combined SPARQL query: %s" % query) else: # We have solved the previous N body literals with a single # conjunctive query, now we need to make each of the literals # an antecedent to a 'query' step. if buildProof: queryStep = InferenceStep(None, source='some RDF graph') # FIXME: subquery undefined queryStep.groundQuery = subquery queryStep.bindings = {} # combinedAnswers[-1] # FIXME: subquery undefined queryHash = URIRef( "tag:[email protected]:Queries#" + makeMD5Digest(subquery)) queryStep.identifier = queryHash for subGoal in conjGroundLiterals: subNs = NodeSet(subGoal.toRDFTuple(), identifier=BNode()) subNs.steps.append(queryStep) step.antecedents.append(subNs) queryStep.parent = subNs for rt, _step in invokeRule( isinstance(answers, bool) and [ projectedBindings] or combinedAnsLazyGenerator, iter(remainingBodyList[len(conjGroundLiterals):]), sip, otherargs, isinstance(answers, bool), step, debug=debug, buildProof=buildProof): yield rt, _step else: # Continue processing rule body condition # one literal at a time try: bodyLiteral = next( bodyLiteralIterator) if py3compat.PY3 else bodyLiteralIterator.next() # if a N3 builtin, execute it using given bindings for boolean answer # builtins are moved to end of rule when evaluating rules via # sip if isinstance(bodyLiteral, N3Builtin): lhs = bodyLiteral.argument rhs = bodyLiteral.result lhs = isinstance( lhs, Variable) and projectedBindings[lhs] or lhs rhs = isinstance( rhs, Variable) and projectedBindings[rhs] or rhs assert lhs is not None and rhs is not None if bodyLiteral.func(lhs, rhs): if debug: print("Invoked %s(%s, %s) -> True" % ( bodyLiteral.uri, lhs, rhs)) # positive answer means we can continue processing the # rule body if buildProof: ns = NodeSet(bodyLiteral.toRDFTuple(), identifier=BNode()) step.antecedents.append(ns) for rt, _step in invokeRule( [projectedBindings], bodyLiteralIterator, sip, otherargs, step, priorBooleanGoalSuccess, debug=debug, buildProof=buildProof): yield rt, _step else: if debug: print("Successfully invoked %s(%s, %s) -> False" % ( bodyLiteral.uri, lhs, rhs)) raise RuleFailure("Failed builtin invokation %s(%s, %s)" % (bodyLiteral.uri, lhs, rhs)) else: # For every body literal, subqueries are generated according # to the sip sipArcPred = URIRef(GetOp(bodyLiteral) + '_' + '_'.join(GetArgs(bodyLiteral))) assert len(list(IncomingSIPArcs(sip, sipArcPred))) < 2 subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) for N, x in IncomingSIPArcs(sip, sipArcPred): # That is, each subquery contains values for the bound arguments # that are passed through the sip arcs entering the node # corresponding to that literal # Create query out of body literal and apply # sip-provided bindings subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) if literalIsGround(subquery): # subquery is ground, so there will only be boolean answers # we return the conjunction of the answers for the current # subquery answer = False ns = None answers = first( itertools.dropwhile( lambda item: not item[0], SipStrategy( subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel))) if answers: answer, ns = answers if not answer and not bodyLiteral.naf or \ (answer and bodyLiteral.naf): # negative answer means the invokation of the rule fails # either because we have a positive literal and there # is no answer for the subgoal or the literal is # negative and there is an answer for the subgoal raise RuleFailure( "No solutions solving ground query %s" % subquery) else: if buildProof: if not answer and bodyLiteral.naf: ns.naf = True step.antecedents.append(ns) # positive answer means we can continue processing the rule body # either because we have a positive literal and answers # for subgoal or a negative literal and no answers for the # the goal for rt, _step in invokeRule( [projectedBindings], bodyLiteralIterator, sip, otherargs, True, step, debug=debug): yield rt, _step else: _answers = \ SipStrategy( subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict( projectedBindings), processedRules, network=step is not None and step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel) # solve (non-ground) subgoal def collectAnswers(_ans): for ans, ns in _ans: if isinstance(ans, dict): try: map = mergeMappings1To2( ans, projectedBindings, makeImmutable=True) yield map except: pass combinedAnswers = collectAnswers(_answers) answers = lazyGeneratorPeek(combinedAnswers) if not answers.successful \ and not bodyLiteral.naf \ or (bodyLiteral.naf and answers.successful): raise RuleFailure( "No solutions solving ground query %s" % subquery) else: # Either we have a positive subgoal and answers # or a negative subgoal and no answers if buildProof: if answers.successful: goals = set([g for a, g in answers]) assert len(goals) == 1 step.antecedents.append(goals.pop()) else: newNs = NodeSet( bodyLiteral.toRDFTuple(), network=step.parent.network, identifier=BNode(), naf=True) step.antecedents.append(newNs) for rt, _step in invokeRule( answers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess, step, debug=debug, buildProof=buildProof): yield rt, _step except StopIteration: # Finished processing rule if priorBooleanGoalSuccess: yield projectedBindings and projectedBindings or True, step elif projectedBindings: # Return the most recent (cumulative) answers and the given # step yield projectedBindings, step else: raise RuleFailure( "Finished processing rule unsuccessfully")
def invokeRule(priorAnswers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess=False, step=None, debug=False, buildProof=False): """ Continue invokation of rule using (given) prior answers and list of remaining body literals (& rule sip). If prior answers is a list, computation is split disjunctively [..] By combining the answers to all these subqueries, we generate answers for the original query involving the rule head Can also takes a PML step and updates it as it navigates the top-down proof tree (passing it on and updating it where necessary) """ assert not buildProof or step is not None proofLevel, memoizeMemory, sipCollection, \ factGraph, derivedPreds, processedRules = otherargs remainingBodyList = [i for i in bodyLiteralIterator] lazyGenerator = lazyGeneratorPeek(priorAnswers, 2) if lazyGenerator.successful: # There are multiple answers in this step, we need to call invokeRule # recursively for each answer, returning the first positive attempt success = False rt = None _step = None ansNo = 0 for priorAns in lazyGenerator: ansNo += 1 try: if buildProof: newStep = InferenceStep(step.parent, step.rule, source=step.source) newStep.antecedents = [ant for ant in step.antecedents] else: newStep = None for rt, _step in\ invokeRule([priorAns], iter([i for i in remainingBodyList]), sip, otherargs, priorBooleanGoalSuccess, newStep, debug=debug, buildProof=buildProof): if rt: yield rt, _step except RuleFailure: pass if not success: # None of prior answers were successful # indicate termination of rule processing raise RuleFailure( "Unable to solve either of %s against remainder of rule: %s" % (ansNo, remainingBodyList)) # yield False, _InferenceStep(step.parent, step.rule, source=step.source) else: lazyGenerator = lazyGeneratorPeek(lazyGenerator) projectedBindings = lazyGenerator.successful and first( lazyGenerator) or {} # First we check if we can combine a large group of subsequent body literals # into a single query # if we have a template map then we use it to further # distinguish which builtins can be solved via # cumulative SPARQl query - else we solve # builtins one at a time def sparqlResolvable(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return isinstance(literal, N3Builtin) and \ literal.uri in factGraph.templateMap def sparqlResolvableNoTemplates(literal): if isinstance(literal, Uniterm): return not literal.naf and GetOp(literal) not in derivedPreds else: return False conjGroundLiterals = list( itertools.takewhile( hasattr(factGraph, 'templateMap') and sparqlResolvable or \ sparqlResolvableNoTemplates, remainingBodyList)) bodyLiteralIterator = iter(remainingBodyList) if len(conjGroundLiterals) > 1: # If there are literals to combine *and* a mapping from rule # builtins to SPARQL FILTER templates .. basePredicateVars = set( reduce(lambda x, y: x + y, [ list(GetVariables(arg, secondOrder=True)) for arg in conjGroundLiterals ])) if projectedBindings: openVars = basePredicateVars.intersection(projectedBindings) else: # We don't have any given bindings, so we need to treat # the body as an open query openVars = basePredicateVars queryConj = EDBQuery( [copy.deepcopy(lit) for lit in conjGroundLiterals], factGraph, openVars, projectedBindings) query, answers = queryConj.evaluate(debug) if isinstance(answers, bool): combinedAnswers = {} rtCheck = answers else: if projectedBindings: combinedAnswers = (mergeMappings1To2(ans, projectedBindings, makeImmutable=True) for ans in answers) else: combinedAnswers = (MakeImmutableDict(ans) for ans in answers) combinedAnsLazyGenerator = lazyGeneratorPeek(combinedAnswers) rtCheck = combinedAnsLazyGenerator.successful if not rtCheck: raise RuleFailure("No answers for combined SPARQL query: %s" % query) else: # We have solved the previous N body literals with a single # conjunctive query, now we need to make each of the literals # an antecedent to a 'query' step. if buildProof: queryStep = InferenceStep(None, source='some RDF graph') queryStep.groundQuery = subquery queryStep.bindings = {} # combinedAnswers[-1] queryHash = URIRef( "tag:[email protected]:Queries#" + \ makeMD5Digest(subquery)) queryStep.identifier = queryHash for subGoal in conjGroundLiterals: subNs = NodeSet(subGoal.toRDFTuple(), identifier=BNode()) subNs.steps.append(queryStep) step.antecedents.append(subNs) queryStep.parent = subNs for rt, _step in invokeRule( isinstance(answers, bool) and [projectedBindings] or combinedAnsLazyGenerator, iter(remainingBodyList[len(conjGroundLiterals):]), sip, otherargs, isinstance(answers, bool), step, debug=debug, buildProof=buildProof): yield rt, _step else: # Continue processing rule body condition # one literal at a time try: bodyLiteral = next( bodyLiteralIterator ) if py3compat.PY3 else bodyLiteralIterator.next() # if a N3 builtin, execute it using given bindings for boolean answer # builtins are moved to end of rule when evaluating rules via sip if isinstance(bodyLiteral, N3Builtin): lhs = bodyLiteral.argument rhs = bodyLiteral.result lhs = isinstance( lhs, Variable) and projectedBindings[lhs] or lhs rhs = isinstance( rhs, Variable) and projectedBindings[rhs] or rhs assert lhs is not None and rhs is not None if bodyLiteral.func(lhs, rhs): if debug: print("Invoked %s(%s, %s) -> True" % (bodyLiteral.uri, lhs, rhs)) # positive answer means we can continue processing the rule body if buildProof: ns = NodeSet(bodyLiteral.toRDFTuple(), identifier=BNode()) step.antecedents.append(ns) for rt, _step in invokeRule([projectedBindings], bodyLiteralIterator, sip, otherargs, step, priorBooleanGoalSuccess, debug=debug, buildProof=buildProof): yield rt, _step else: if debug: print("Successfully invoked %s(%s, %s) -> False" % (bodyLiteral.uri, lhs, rhs)) raise RuleFailure( "Failed builtin invokation %s(%s, %s)" % (bodyLiteral.uri, lhs, rhs)) else: # For every body literal, subqueries are generated according # to the sip sipArcPred = URIRef(GetOp(bodyLiteral) + \ '_' + '_'.join(GetArgs(bodyLiteral))) assert len(list(IncomingSIPArcs(sip, sipArcPred))) < 2 subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) for N, x in IncomingSIPArcs(sip, sipArcPred): #That is, each subquery contains values for the bound arguments #that are passed through the sip arcs entering the node #corresponding to that literal #Create query out of body literal and apply sip-provided bindings subquery = copy.deepcopy(bodyLiteral) subquery.ground(projectedBindings) if literalIsGround(subquery): #subquery is ground, so there will only be boolean answers #we return the conjunction of the answers for the current #subquery answer = False ns = None answers = first( itertools.dropwhile( lambda item: not item[0], SipStrategy( subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and \ step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel))) if answers: answer, ns = answers if not answer and not bodyLiteral.naf or \ (answer and bodyLiteral.naf): #negative answer means the invokation of the rule fails #either because we have a positive literal and there #is no answer for the subgoal or the literal is #negative and there is an answer for the subgoal raise RuleFailure( "No solutions solving ground query %s" % subquery) else: if buildProof: if not answer and bodyLiteral.naf: ns.naf = True step.antecedents.append(ns) #positive answer means we can continue processing the rule body #either because we have a positive literal and answers #for subgoal or a negative literal and no answers for the #the goal for rt, _step in invokeRule([projectedBindings], bodyLiteralIterator, sip, otherargs, True, step, debug=debug): yield rt, _step else: _answers = \ SipStrategy(subquery.toRDFTuple(), sipCollection, factGraph, derivedPreds, MakeImmutableDict(projectedBindings), processedRules, network=step is not None and \ step.parent.network or None, debug=debug, buildProof=buildProof, memoizeMemory=memoizeMemory, proofLevel=proofLevel) # solve (non-ground) subgoal def collectAnswers(_ans): for ans, ns in _ans: if isinstance(ans, dict): try: map = mergeMappings1To2( ans, projectedBindings, makeImmutable=True) yield map except: pass combinedAnswers = collectAnswers(_answers) answers = lazyGeneratorPeek(combinedAnswers) if not answers.successful \ and not bodyLiteral.naf \ or (bodyLiteral.naf and answers.successful): raise RuleFailure( "No solutions solving ground query %s" % subquery) else: # Either we have a positive subgoal and answers # or a negative subgoal and no answers if buildProof: if answers.successful: goals = set([g for a, g in answers]) assert len(goals) == 1 step.antecedents.append(goals.pop()) else: newNs = NodeSet( bodyLiteral.toRDFTuple(), network=step.parent.network, identifier=BNode(), naf=True) step.antecedents.append(newNs) for rt, _step in invokeRule( answers, bodyLiteralIterator, sip, otherargs, priorBooleanGoalSuccess, step, debug=debug, buildProof=buildProof): yield rt, _step except StopIteration: #Finished processing rule if priorBooleanGoalSuccess: yield projectedBindings and projectedBindings or True, step elif projectedBindings: #Return the most recent (cumulative) answers and the given step yield projectedBindings, step else: raise RuleFailure( "Finished processing rule unsuccessfully")