コード例 #1
0
def run5():
    df = du_old_excel('奖品发放')

    df['奖励'] = df['金额'].apply(lambda x: str(x) + '元') + df['类型']

    df = pd.DataFrame(df.groupby(['奖励']).size()).T
    df.reset_index(inplace=True)

    list1 = ['1元红包', '2元红包', '5元红包', '10元红包', '20元红包', '30元红包']

    try:
        df = df[list1]
    except KeyError:
        # 判定红包类型是否存在于list1
        error = [l for l in list1 if l not in list(df.columns)]
        # 把不存在的部分保存进df
        for x in error:
            df[x] = 0
        df = df[list1]

    df.fillna(0, inplace=True)

    df['总和'] = df.apply(lambda x: x.sum(), axis=1)

    print('第五个表运行完毕.')
    return df
コード例 #2
0
ファイル: run5.py プロジェクト: SuperShen9/work_by_md
def run5():
    df = du_old_excel('奖品发放')

    df['奖励'] = df['金额'].apply(lambda x: str(x) + '元') + df['类型']

    df['日期'] = df['兑换日期'].apply(lambda x: x[:10])

    df = pd.DataFrame(df.groupby(['日期', '奖励']).size())
    df.reset_index(inplace=True)

    df = pd.pivot_table(df, values=0, index='日期', columns='奖励')

    list1 = ['2元红包', '5元红包', '10元红包', '20元红包', '50元红包', '10元话费', '20元话费', '50元话费', '100元话费']

    try:
        df = df[list1]
    except KeyError:
        # 判定红包类型是否存在于list1
        error = [l for l in list1 if l not in list(df.columns)]
        # 把不存在的部分保存进df
        for x in error:
            df[x] = 0
        df = df[list1]


    df.fillna(0, inplace=True)


    df['总和'] = df.apply(lambda x: x.sum(), axis=1)

    print('\n第五个表运行完毕……')

    return df
コード例 #3
0
def run1():
    df = du_old_excel('充值')
    df_map = pd.read_excel('C:\\Users\Administrator\Desktop\map.xlsx')

    df_map = df_map[['product_id', 'Flag']]

    df['time'] = df['pay_time'].apply(lambda x: x.split(' ')[0])

    df['week'] = df['time'].apply(lambda x: fx(x))

    # 合并匹配表
    df = pd.merge(left=df, right=df_map, on='product_id', how='left')

    df = pd.DataFrame(
        [df.groupby(['Flag']).size(),
         df.groupby(['Flag'])['amount'].sum()]).T

    df.reset_index(inplace=True)

    df.sort_values(by=df.columns[-2], ascending=0, inplace=True)

    df.fillna(0, inplace=True)

    df.columns = ['类型', '充值次数', '充值金额']
    df['次数占比'] = df['充值次数'] / (df['充值次数'].sum())
    df['金额占比'] = df['充值金额'] / (df['充值金额'].sum())

    print('第一个表运行完毕')

    return df
コード例 #4
0
def run6():
    df = du_old_excel('我要赚钱')

    df['gen_time'] = df['gen_time'].apply(lambda x: x.split(' ')[0])

    del df['invite_id']
    del df['player_id']
    df.set_index('gen_time', inplace=True)

    df6 = pd.DataFrame(df.sum()).T

    df6['被推广用户人数'] = df.shape[0]

    df6['盈亏'] = df6['recharge'] - df6['get_redgem'] / 10 - df6[
        'redgem'] / 10 - df6['gold'] / 20000

    df6.rename(columns={
        'get_redgem': '获得红宝石',
        'recharge': '充值金额',
        'redgem': '奖励红宝石',
        'gold': '奖励金币',
        0: '被推广用户人数'
    },
               inplace=True)

    df6 = df6[['被推广用户人数', '获得红宝石', '充值金额', '奖励红宝石', '奖励金币', '盈亏']]

    print('第六个表运行完毕.')

    return df6
コード例 #5
0
def run6():
    df = du_old_excel('我要赚钱')

    df['gen_time'] = df['gen_time'].apply(lambda x: x.split(' ')[0])

    del df['invite_id']
    del df['player_id']
    df.set_index('gen_time', inplace=True)

    df_s = pd.DataFrame(df.groupby('gen_time').size())
    df.reset_index(inplace=True)

    df = df.groupby('gen_time').sum()

    df['盈亏'] = df['recharge'] - df['get_redgem'] / 10 - df['redgem'] / 10 - df[
        'gold'] / 20000

    df.reset_index(inplace=True)

    df = pd.merge(left=df_s, right=df, on='gen_time', how='left')

    df.rename(columns={
        'get_redgem': '获得红宝石',
        'recharge': '充值金额',
        'redgem': '奖励红宝石',
        'gold': '奖励金币',
        0: '被推广用户人数'
    },
              inplace=True)

    print('\n第六个表运行完毕……')

    return df
コード例 #6
0
ファイル: 浪仔CPA.py プロジェクト: SuperShen9/work_by_md
def run2():
    try:
        # 读取数据
        df = du_old_excel('充值2天')
        df3 = du_old_excel('注册CPA')
    except FileNotFoundError:
        print('\n缺少运行数据,请先下载……')
        exit()

    df = df[(df['channel'] == 800106) | (df['channel'] == 800113)]

    # 取str时间函数
    def time_c(df, col, sp=' '):
        df[col] = df[col].apply(lambda x: pd.to_datetime(str(x).split(sp)[0]))
        return df

    # 取出充值时间为昨天的数据
    df = time_c(df, 'pay_time')
    df = df[df['pay_time'] == pd.to_datetime(yesterday)]

    # 注册数据清洗用于匹配
    df3 = time_c(df3, '注册时间')
    df3['flag'] = 'new'
    df3.rename(columns={'用户ID': 'player_id'}, inplace=True)
    df3 = df3[['player_id', 'flag']]

    # 匹配到充值数据
    df = pd.merge(left=df, right=df3, on='player_id', how='left')
    df = df[df['flag'].notnull()]

    df = pd.DataFrame([
        df.groupby('channel')['amount'].sum(),
        df.groupby('channel')['player_id'].unique()
    ]).T

    df['新用户付费人数'] = df['player_id'].apply(lambda x: len(x))

    df['(付费率)'] = ''

    df = df[['新用户付费人数', '(付费率)', 'amount']]

    df.to_excel(or_path + 'CPA注册新用户付费率.xlsx')

    exit()

    return df
コード例 #7
0
def run2():
    df = du_old_excel('充值')
    df3 = du_old_excel('注册')

    # 提取充值数据的日期
    df['day'] = df['pay_time'].apply(lambda x: x.split(' ')[0].split('/')[2])
    df['on'] = df['player_id'].apply(lambda x: str(x)) + '|' + df['day']

    # # 整理前2天当日的注册数据
    df3['Flag'] = 'new'
    df3.rename(columns={'用户ID': 'player_id'}, inplace=True)
    df3['day'] = df3['注册时间'].apply(lambda x: x.split(' ')[0].split('/')[2])
    df3['on'] = df3['player_id'].apply(lambda x: str(x)) + '|' + df3['day']
    df3 = df3[['on', 'Flag']]

    df = pd.merge(left=df, right=df3, on='on', how='left')
    df['Flag'].fillna('old', inplace=True)

    i = 0
    df_form = pd.DataFrame()

    def df_f(df):
        # 人数计算
        df_form.loc[i, '新用户量'] = len(
            df[df['Flag'] == 'new']['player_id'].unique())
        df_form.loc[i, '总用户量'] = len(df['player_id'].unique())
        df_form.loc[i, '新用户占比'] = '%.2f%%' % (df_form.loc[i, '新用户量'] /
                                              df_form.loc[i, '总用户量'] * 100)

        # 金额消费计算
        df_form.loc[i, '新用户消费金额'] = df[df['Flag'] == 'new']['amount'].sum()
        df_form.loc[i, '总消费'] = df['amount'].sum()
        df_form.loc[i, '新用户消费占比'] = '%.2f%%' % (df_form.loc[i, '新用户消费金额'] /
                                                df_form.loc[i, '总消费'] * 100)

        return df_form

    df_form = df_f(df)

    # 删除多余2列
    del df_form['总用户量']
    del df_form['总消费']

    print('第二个表运行完毕.')

    return df_form
コード例 #8
0
ファイル: run6.py プロジェクト: SuperShen9/work_by_md
def run6():
    df = du_old_excel('我要赚钱')

    df['奖励一状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['奖励二状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['奖励三状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['time'] = df['关系建立时间'].apply(lambda x: x.split(' ')[0])

    df1 = df.groupby(['time'])['奖励一状态'].sum()
    df2 = df.groupby(['time'])['奖励二状态'].sum()
    df3 = df.groupby(['time'])['奖励三状态'].sum()

    df4 = df.groupby(['time']).size()

    df = pd.DataFrame([df1, df2, df3, df4]).T

    df.reset_index(inplace=True)
    df['day'] = df['time'].apply(lambda x: int(x.split('/')[-1]))

    ## 因为后台的对【关系建立时间】的修改,这里不需要再取出时间段了
    # df = df[(df['day'] >= int(str(bef_yesterday)[-2:])) & (df['day'] <= int(str(yesterday)[-2:]))]

    # print(df)
    # exit()

    df.rename(columns={'Unnamed 0': '总和'}, inplace=True)

    df['一档完成率'] = (df['奖励一状态'] /
                   df['总和']).apply(lambda x: '%.2f%%' % (x * 100))
    df['二档完成率'] = (df['奖励二状态'] /
                   df['总和']).apply(lambda x: '%.2f%%' % (x * 100))
    df['三档完成率'] = (df['奖励三状态'] /
                   df['总和']).apply(lambda x: '%.2f%%' % (x * 100))

    df = df[[
        'time', '奖励一状态', '奖励二状态', '奖励三状态', '一档完成率', '二档完成率', '三档完成率', '总和'
    ]]

    df.rename(columns={
        '奖励一状态': '奖励一完成人数',
        '奖励二状态': '奖励二完成人数',
        '奖励三状态': '奖励三完成人数',
        'time': '日期'
    },
              inplace=True)

    print('\n第六个表运行完毕……')

    # print(df)
    # exit()

    return df
コード例 #9
0
def run6():
    df = du_old_excel('我要赚钱')

    df['奖励一状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['奖励二状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['奖励三状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)

    del df['被推广玩家']
    del df['推广玩家']
    df.set_index('关系建立时间', inplace=True)

    df = pd.DataFrame(df.sum()).T

    print('\n第六个表运行完毕……')

    return df
コード例 #10
0
ファイル: 月报.py プロジェクト: SuperShen9/work_by_md
def run5():
    df = du_old_excel('奖品发放')

    df['奖励'] = df['金额'].apply(lambda x: str(x) + '元') + df['类型']

    df = pd.DataFrame(df.groupby(['奖励']).size()).T
    df.reset_index(inplace=True)

    try:
        df = df[['2元红包', '5元红包', '8元红包', '10元红包', '10元话费', '100元话费']]

    except KeyError:
        df = df[['2元红包', '5元红包', '8元红包', '10元红包', '10元话费']]
        df['100元话费'] = 0

    df.fillna(0, inplace=True)

    df['总和'] = df.apply(lambda x: x.sum(), axis=1)

    print('第五个表运行完毕.')
    return df
コード例 #11
0
ファイル: 月报.py プロジェクト: SuperShen9/work_by_md
def run6():
    df = du_old_excel('我要赚钱')

    df['奖励一状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['奖励二状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    df['奖励三状态'].replace({'已完成': 1, '未完成': 0}, inplace=True)
    or_num = df.shape[0]
    df = pd.DataFrame(df.sum()).T

    df = df[['奖励一状态', '奖励二状态', '奖励三状态']]

    df['总和'] = or_num

    df['一档完成率'] = (df['奖励一状态'] / df['总和']).apply(lambda x: '%.2f%%' % (x * 100))
    df['二档完成率'] = (df['奖励二状态'] / df['总和']).apply(lambda x: '%.2f%%' % (x * 100))
    df['三档完成率'] = (df['奖励三状态'] / df['总和']).apply(lambda x: '%.2f%%' % (x * 100))

    df = df[['奖励一状态', '奖励二状态', '奖励三状态', '一档完成率', '二档完成率', '三档完成率', '总和']]

    print('第六个表运行完毕.')

    return df