コード例 #1
0
 def validate(self):
     x = self.data
     u = self.membership
     v = self.centers
     k = u.shape[0]
     e1 = np.sum(np.square(u) * Euclidean()(x, np.mean(x, axis=0).reshape(
         1, -1)))
     ek = np.sum(np.square(u) * Euclidean()(x, v))
     dk = np.max(Euclidean()(v))
     return (1. / k * e1 / ek * dk) ** 2
コード例 #2
0
 def validate(self):
     spread = np.square(Euclidean()(self.data, self.centers))
     separation = np.square(self.intercluster_distances())
     separation[separation == 0] = np.inf
     n = self.data.shape[0]
     return (1. / n) * np.sum(
         np.multiply(np.square(self.membership), spread)) / np.min(
         separation)
コード例 #3
0
    def diameters(partition):
        """Calculates the maximum pairwise distance across a partition.

        Parameters
        ----------
        partition : list
            a list of arrays, each containing data belonging to a specific
            cluster.

        """
        return np.array([np.max(Euclidean()(p)) for p in partition])
コード例 #4
0
    def mean_pairwise_distances(partition):
        """Calculates the mean pairwise distance across a partition.

        Parameters
        ----------
        partition : list
            a list of arrays, each containing data belonging to a specific
            cluster.

        """
        mpd = [np.mean(Euclidean()(p)) / 2 for p in partition]
        return np.array(mpd)
コード例 #5
0
    def mean_distance_from_mean(partition):
        """Calculates the data's mean distance from the partition's mean.

        Parameters
        ----------
        partition : list
            a list of arrays, each containing data belonging to a specific
            cluster.

        """
        ds = [np.mean(Euclidean()(p, np.mean(p, axis=0).reshape(1, -1))) for p
              in partition]
        return np.array(ds)
コード例 #6
0
    def cluster_scatter(self):
        """Calculates the mean distance between data and cluster centers."""

        return np.array(
            [np.mean(Euclidean()(p, a.reshape(1, -1)), axis=1) for p, a in
             zip(self.partition, self.centers)]).flatten()
コード例 #7
0
    def intercluster_distances(self):
        """Calculates the euclidean distance between cluster centers."""

        return Euclidean()(self.centers)