def test_easy(): b_modes = 3 t_modes = 3 model_num = 1 p = rw.base_params(b_modes + t_modes + 1) sm = mf.SymbolicModel.from_file(f'tests/{b_modes}B{t_modes}T-M{model_num}.py') # Set HALE Specific parameters p.rho.value = 0.0889 p.s_t.value = 16 p.c.value = 1 p.EI.value = 2e4 p.GJ.value = 1e4 p.rho_t.value = 0.75 p.e_0.value = 0.25 p.e_1.value = 0 # set Parameter permutations vars_ls =[] #vars_ls.append((p.m_factor,[0.5,1,1.5])) #vars_ls.append((p.Lambda,np.deg2rad([10,17.5,25]))) #vars_ls.append((p.alpha_r,np.deg2rad([0,5,10]))) #vars_ls.append((p.ratio_fwt,[0,0.1,0.2,0.3])) #vars_ls.append((p.V,np.linspace(0,200,201))) # ensure velocity last so that fixed points iterats up the velocity vars_ls.append((p.m_factor,[1])) vars_ls.append((p.Lambda,np.deg2rad([10]))) vars_ls.append((p.alpha_r,np.deg2rad([0,5,10]))) vars_ls.append((p.ratio_fwt,[0,0.1,0.2,0.3])) vars_ls.append((p.V,np.linspace(0,40,80))) # ensure velocity last so that fixed points iterats up the velocity # generate result res = rw.eigen_perm_params(p,sm,vars_ls,np.isin(model_num,[1,2,3,4])) assert (3==3)
def Model_Eigen(model_num, b_modes, t_modes): print(f'Genrating data for model {model_num}') try: p = JEC() dataset_name = 'JEC' sm = mf.SymbolicModel.from_file( f'{b_modes}B{t_modes}T-M{model_num}.py') vars_ls = [] vars_ls.append((p.Lambda, np.deg2rad([10, 17.5, 25]))) #vars_ls.append((p.V,np.linspace(0,40,81))) # V must be second vars_ls.append((p.V, np.linspace(0, 150, 151))) # V must be second vars_ls.append((p.alpha_r, np.deg2rad([0, 5, 10]))) vars_ls.append((p.c_dmax, [0, 0.5, 1, 1.5])) #vars_ls.append((p.ratio_fwt,[0,0.1,0.2,0.3])) #vars_ls.append((p.ratio_DL,[0,0.05,0.1,0.2])) vars_ls.append((p.m_factor, [0.5, 1, 1.5])) calc_fixed = True if np.isin(model_num, np.array([1, 2, 3, 4, 5 ])) else False flutdf = rw.eigen_perm_params(p, sm, vars_ls, calc_fixed, jac=False) flutdf.to_pickle( f'Eigen_{b_modes}B{t_modes}T-M{model_num}_{dataset_name}.pkl') print(f'Genrated data for model {model_num}') except: print(f'Model {model_num} exited with an error')