コード例 #1
0
def evaluate():
    name = "final"
    locations = ['bag', 'hand', 'hips', 'torso']
    datasets = ['train', 'validation']

    for dset in datasets:
        for loc in locations:

            params = get_params(name=name,
                                FX_sel='basic',
                                location=loc,
                                dset_L='validation',
                                dset_U='test',
                                dset_V=dset,
                                ratio_L=1.0,
                                ratio_U=1.0,
                                ratio_V=1.0,
                                prediction=False,
                                evaluate=True,
                                pretrain='pretrain',
                                runs=10,
                                epochs=50,
                                save_step=2,
                                oversampling=True,
                                G_label_sample=True,
                                G_label_factor=1,
                                C_basic_train=True,
                                R_active=False,
                                G_no=1,
                                D_no=1,
                                C_no=1,
                                log_name='log')

            train(params=params)
コード例 #2
0
def basic():
    name = "final"

    params = get_params(name=name,
                        FX_sel='basic',
                        location='hips',
                        dset_L='validation',
                        dset_U='test',
                        dset_V='validation',
                        ratio_L=1.0,
                        ratio_U=1.0,
                        ratio_V=1.0,
                        prediction=True,
                        pretrain='pretrain',
                        runs=20,
                        epochs=50,
                        save_step=2,
                        oversampling=True,
                        G_label_sample=True,
                        G_label_factor=1,
                        C_basic_train=True,
                        R_active=False,
                        G_no=1,
                        D_no=1,
                        C_no=1,
                        log_name='log')

    train(params=params)
コード例 #3
0
def test():
    name = "test"
    network.clear(name)

    params = get_params(name=name,
                        FX_sel='basic',
                        location='hips',
                        dset_L='train',
                        dset_U='validation',
                        dset_V='validation',
                        ratio_L=1,
                        ratio_U=1,
                        ratio_V=1,
                        prediction=True,
                        pretrain='final',
                        runs=1,
                        epochs=10,
                        save_step=2,
                        oversampling=True,
                        G_label_sample=True,
                        G_label_factor=1,
                        C_basic_train=True,
                        R_active=True,
                        G_no=1,
                        D_no=1,
                        C_no=1,
                        log_name='log')

    train(params=params)
    GAN.get_prediction_accuracy(params)
コード例 #4
0
def load_FX(FX_sel):
    from GAN import get_params
    params = get_params(FX_sel=FX_sel)

    params['location'] = 'all'
    data, label = load_data(params, 'validation')
    print('Loaded!')
    print(" Data:", data.shape)
    print("  NaN:", np.count_nonzero(np.isnan(data)))
    print("Label:", label.shape)
    print("----------------------")

    params['location'] = 'bag'
    data, label = load_data(params, 'train')
    print('Loaded!')
    print(" Data:", data.shape)
    print("  NaN:", np.count_nonzero(np.isnan(data)))
    print("Label:", label.shape)
    print("----------------------")

    params['location'] = 'hand'
    data, label = load_data(params, 'train')
    print('Loaded!')
    print(" Data:", data.shape)
    print("  NaN:", np.count_nonzero(np.isnan(data)))
    print("Label:", label.shape)
    print("----------------------")

    params['location'] = 'hips'
    data, label = load_data(params, 'train')
    print('Loaded!')
    print(" Data:", data.shape)
    print("  NaN:", np.count_nonzero(np.isnan(data)))
    print("Label:", label.shape)
    print("----------------------")

    params['location'] = 'torso'
    data, label = load_data(params, 'train')
    print('Loaded!')
    print(" Data:", data.shape)
    print("  NaN:", np.count_nonzero(np.isnan(data)))
    print("Label:", label.shape)
    print("----------------------")

    params['location'] = 'test'
    data, label = load_data(params, 'test')
    print('Loaded!')
    print(" Data:", data.shape)
    print("  NaN:", np.count_nonzero(np.isnan(data)))
    print("----------------------")
コード例 #5
0
def cross_train(def_params,
                param_1,
                param_1_lst,
                param_2,
                param_2_lst,
                last_bmark=0):

    clear('results')
    results = np.zeros((len(param_1_lst), len(param_2_lst), 3))

    count = 1
    for x, p1 in enumerate(param_1_lst):
        for y, p2 in enumerate(param_2_lst):

            c_name = def_params['name'] + '_' + str(count).zfill(3)
            params = network.load_Parameter(c_name)
            if params is None:
                params = def_params.copy()
                params['name'] = c_name
                params[param_1] = p1
                params[param_2] = p2
            else:
                params = get_params(**params)

            # Continue at the last benchmark
            if count > last_bmark:
                log('Benchmark %s: %s = %s | %s = %s' %
                    (c_name, param_1, str(p1), param_2, str(p2)),
                    name='results')
                train(params)

            mat_accuracy_G, mat_accuracy_D, mat_accuracy_C = network.load_Acc(
                params)

            acc_G = np.mean(mat_accuracy_G, axis=0)
            acc_D = np.mean(mat_accuracy_D, axis=0)
            acc_C = np.mean(mat_accuracy_C, axis=0)

            results[x, y, 1] = acc_G[-1]
            results[x, y, 2] = acc_D[-1]
            results[x, y, 0] = acc_C[-1]

            count += 1

    excel.save(def_params, param_1, param_1_lst, param_2, param_2_lst, results)
コード例 #6
0
def pretrain():
    name = 'pretrain'

    params = get_params(name=name,
                        FX_sel='basic',
                        location='hips',
                        dset_L='train',
                        dset_V='validation',
                        ratio_L=1.00,
                        ratio_V=1.00,
                        runs=20,
                        epochs=25,
                        save_step=5,
                        oversampling=True,
                        C_no=1,
                        log_name='log')

    train_C(params=params)
コード例 #7
0
def cross_params(net, lst_1, lst_2, last_bmark=0):
    name = 'cross_' + net

    params = get_params(name=name,
                        FX_sel='basic',
                        location='hips',
                        dset_L='validation',
                        dset_U='validation',
                        dset_V=None,
                        ratio_L=0.5,
                        ratio_U=0.5,
                        runs=5,
                        epochs=150,
                        save_step=15,
                        oversampling=True,
                        G_label_sample=True,
                        G_label_factor=1,
                        C_basic_train=True,
                        R_active=False,
                        G_no=1,
                        D_no=1,
                        C_no=1,
                        log_name='log')
    network.save_Parameter(params)

    param_1 = net + 'LR'
    param_1_lst = lst_1
    param_2 = net + 'B1'
    param_2_lst = lst_2

    log('Crosstrain param %s against param %s.' % (param_1, param_2),
        name=params['log_name'])
    log('List 1: [%s]' % (' '.join(str(v) for v in param_1_lst)),
        name=params['log_name'])
    log('List 2: [%s]' % (' '.join(str(v) for v in param_2_lst)),
        name=params['log_name'])
    log('Total runs: %d' % (len(param_1_lst) * len(param_2_lst)),
        name=params['log_name'])

    cross_train(params, param_1, param_1_lst, param_2, param_2_lst, last_bmark)
コード例 #8
0
def test_cross():
    name = 'test_cross'

    params = get_params(name=name,
                        FX_sel='basic',
                        location='hips',
                        dset_L='validation',
                        dset_U='validation',
                        runs=3,
                        epochs=6,
                        save_step=3,
                        oversampling=False,
                        G_label_sample=True,
                        G_label_factor=1,
                        C_basic_train=True,
                        R_active=False,
                        G_no=1,
                        D_no=1,
                        C_no=1,
                        ratio_L=0.05,
                        ratio_U=0.33,
                        log_name='log')
    network.save_Parameter(params)

    param_1 = 'GLR'
    param_1_lst = [0.0005, 0.001, 0.0015]
    param_2 = 'GB1'
    param_2_lst = [0.3, 0.7, 0.9, 0.99]

    log('Crosstrain param %s against param %s.' % (param_1, param_2),
        name=params['log_name'])
    log('List 1: [%s]' % (' '.join(str(v) for v in param_1_lst)),
        name=params['log_name'])
    log('List 2: [%s]' % (' '.join(str(v) for v in param_2_lst)),
        name=params['log_name'])
    log('Total runs: %d' % (len(param_1_lst) * len(param_2_lst)),
        name=params['log_name'])

    cross_train(params, param_1, param_1_lst, param_2, param_2_lst, 0)
コード例 #9
0
def rerun():
    train(params=get_params(name="final"))
    train(params=get_params(name="Val_Val"))
    train(params=get_params(name="Val_Train"))