netD_B.cuda() if opt.mode == 'train': # Data augmentation and prep for numm in range(int(opt.n_data / 200)): bigimage, biglabel = construct('../train3D') sampling(bigimage, biglabel, numm + 1, opt.dataroot + '/data', rand_num=56) if opt.resume == 'Y': # Load state dicts netG_A2B.load_state_dict(torch.load(opt.generator_A2B)) netG_B2A.load_state_dict(torch.load(opt.generator_B2A)) netD_A.load_state_dict(torch.load(opt.discriminator_A)) netD_B.load_state_dict(torch.load(opt.discriminator_B)) # Set model's test mode netG_A2B.eval() netG_B2A.eval() netD_A.eval() netD_B.eval() else: netG_A2B.apply(weights_init_normal) netG_B2A.apply(weights_init_normal) netD_A.apply(weights_init_normal) netD_B.apply(weights_init_normal) # Lossess
nc=3 assert dataset print('Saving Features') if not os.path.exists(feature_file): dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers) netD = Discriminator(opt.ndf, opt.nc, opt.filters, opt.strides, opt.padding) netD.cuda() epoch = 10 netD.load_state_dict(torch.load(opt.model_path + 'netD_epoch_{}.pth'.format(epoch))) print(netD) netD.eval() n_features = 4096 # 1024x2x2 save_features(dataloader, opt.batch_size, n_features, feature_file) print('Load Features') data = np.loadtxt(feature_file, dtype=np.float16) features, labels = data[:, : -1], data[:, -1: ] shape = features.shape print('Data has {} samples and {} features '.format(shape[0], shape[1])) X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.33, random_state=42)