コード例 #1
0
    def next_generation(self):
        """ Modify the population for the next generation. """
        child_pop = [copy.deepcopy(self.elite_ind)]

        # Perform tournament selection.
        for i in range(len(self.genomes) - 1):
            tourn = random.sample(self.genomes, 2)
            if tourn[0]['fitness'] < tourn[1]['fitness']:
                child_pop.append(copy.deepcopy(tourn[0]))
            else:
                child_pop.append(copy.deepcopy(tourn[1]))
            child_pop[-1]['id'] = self.child_id
            self.child_id += 1

        #Crossover
        child_pop = single_point_crossover(child_pop, cross_over_prob)

        # Mutate genes in the child genomes.
        child_pop = random_value_mutation(child_pop, mutation_prob)

        for child in child_pop:
            child['generation'] = CURRENT_GEN + 1

        self.genomes = child_pop
        self.id_map = {
            k: v
            for k, v in zip([x['id'] for x in self.genomes],
                            [i for i in range(self.pop_size)])
        }
    def next_generation(self):
        """ Modify the population for the next generation. """
        child_pop = [copy.deepcopy(self.elite_ind)]

        # Perform tournament selection.
        for i in range(len(self.genomes) - 1):
            tourn = random.sample(self.genomes, TOURNAMENT_SIZE)

            fitness_list = []
            for ind in tourn:
                fitness_list.append(ind['fitness'])

            winner_index = fitness_list.index(max(fitness_list))
            child_pop.append(copy.deepcopy(tourn[winner_index]))

            child_pop[-1]['id'] = self.child_id
            self.child_id += 1

        #Crossover
        child_pop = single_point_crossover(child_pop, CROSS_OVER_PROB)

        # Mutate genes in the child genomes.
        child_pop = random_value_mutation(child_pop, MUTATION_PROB)

        for child in child_pop:
            child['generation'] = CURRENT_GEN + 1

        self.genomes = child_pop
        self.id_map = {
            k: v
            for k, v in zip([x['id'] for x in self.genomes],
                            [i for i in range(self.pop_size)])
        }