コード例 #1
0
def marginal_genecorr(pfile, gfile, startTraitIdx=0, nTraits=np.inf):
    """
    running marginal gene-gene correlations

    Input:
    pfile        :   phenotype file
    cfile        :   covariance matrix file
    ffile        :   covariates file

    gfile        :   basename of output file 

    startTraidIdx : first trait to be analyses 
    nTraits       : number of traits to be analysed
    """

    if np.isfinite(nTraits): gfile += ".startTrait_%d" % startTraitIdx

    preader = phenoReaderFile.PhenoReaderFile(pfile)
    model = gnetlmm.GNetLMM(preader, None)
    corr, pv = model.marginal_gene_correlations(startTraitIdx=startTraitIdx,
                                                nTraits=nTraits)
    write = writer.Writer(gfile + '.pv')
    write.writeMatrix(pv, fmt='%.4e')
    write = writer.Writer(gfile + '.corr')
    write.writeMatrix(corr, fmt='%.4f')
コード例 #2
0
ファイル: simPhenoCore.py プロジェクト: LongZhao1992/GNetLMM
def simPheno(options):
    assert options.bfile!=None, 'Please specify a bfile.'
    assert options.pfile!=None, 'Please specify a pfile.'
    
    sp.random.seed(options.seed)
    
    print 'simulating genes'
    if options.networkDesign=='star':
        sim = simulator.HotSpotSimulator(options.bfile)
    elif options.networkDesign=='sparse':
        sim = simulator.SparseSimulator(options.bfile)
    else:
        raise Exception("networkDesign '%s' is not known."%options.networkDesign)
    RV = sim.simulateGenes(T=options.T,varSnp=options.varSnp,varNetwork=options.varNetwork,expN=options.expN,
                           alpha=options.alpha,nConfounder=options.nConfounder,confPerGene=options.confPerGene)

    print 'exporting simulated data'
    outdir = os.path.split(options.pfile)[0]
    if not(os.path.exists(outdir)): os.mkdir(outdir)
    np.savetxt('%s.Aconf'%options.pfile, RV['Aconf'], fmt='%d')
    np.savetxt('%s.Agene'%options.pfile, RV['Agene'], fmt='%d')
    np.savetxt('%s.conf'%options.pfile, RV['H'], fmt='%.6f')

    write = writer.Writer(options.pfile)
    write.writeColumnInfo(data={'fid':sim.genoreader.fam[:,0]})
    write.writeRowInfo(data={'gene_ids':RV['gene_ids'], 'gene_chrom':RV['gene_chrom'], 'gene_start':RV['gene_start'],
                             'causal_rs':RV['rs']})
    write.writeMatrix(RV['Y'], fmt='%.6f')
コード例 #3
0
ファイル: preprocessCore.py プロジェクト: brakitsch/GNetLMM
def marginal_genecorr(bfile, pfile, gfile):
    """
    running marginal gene-gene correlations

    Input:
    bfile        :   binary bed file (bfile.bed, bfile.bim and bfile.fam are required)
    pfile        :   phenotype file
    cfile        :   covariance matrix file
    ffile        :   covariates file

    gfile        :   basename of output file 
    """
    preader = phenoReader.PhenoReaderFile(pfile)
    greader = bedReader.BedReader(bfile)
    model = gnetlmm.GNetLMM(preader, greader)
    corr, pv = model.marginal_gene_correlations()
    write = writer.Writer(gfile + '.pv')
    write.writeMatrix(pv, fmt='%.4e')
    write = writer.Writer(gfile + '.corr')
    write.writeMatrix(corr, fmt='%.4f')
コード例 #4
0
def initial_scan(bfile,
                 pfile,
                 cfile,
                 ffile,
                 assoc0file,
                 startSnpIdx=0,
                 nSnps=np.inf,
                 memory_efficient=False):
    """
    running initial scan using a standard linear mixed model

    Input:
    bfile        :   binary bed file (bfile.bed, bfile.bim and bfile.fam are required)
    pfile        :   phenotype file
    cfile        :   covariance matrix file
    ffile        :   covariates file

    assoc0file   :   basename of output file 
    """
    K = None
    if cfile is not None:
        K = np.loadtxt(cfile)

    Covs = None
    if ffile is not None:
        Covs = np.loadtxt(ffile)

    if np.isfinite(nSnps): assoc0file += ".startSnp_%d" % startSnpIdx

    preader = phenoReaderFile.PhenoReaderFile(pfile)
    greader = bedReader.BedReader(bfile)
    model = gnetlmm.GNetLMM(preader, greader, K=K, Covs=Covs)
    beta0, pv0 = model.initial_scan(startSnpIdx, nSnps, memory_efficient)

    write = writer.Writer(assoc0file + '.pv')
    write.writeMatrix(pv0, fmt='%.4e')

    write = writer.Writer(assoc0file + '.beta')
    write.writeMatrix(beta0, fmt='%.4f')