コード例 #1
0
class ProbabilityOfImprovement(Acquisition):
    """
    Probability of Improvement acquisition function for single-objective global optimization.

    .. math::
       \\alpha(\\mathbf x_{\\star}) = \\int_{-\\infty}^{f_{\\min}} \\, p( f_{\\star}\\,|\\, \\mathbf x, \\mathbf y, \\mathbf x_{\\star} ) \\, d f_{\\star}
    """
    def __init__(self, model):
        """
        :param model: GPflow model (single output) representing our belief of the objective 
        """
        super(ProbabilityOfImprovement, self).__init__(model)
        self.fmin = DataHolder(np.zeros(1))
        self.setup()

    def setup(self):
        super(ProbabilityOfImprovement, self).setup()
        samples_mean, _ = self.models[0].predict_f(self.data[0])
        self.fmin.set_data(np.min(samples_mean, axis=0))

    def build_acquisition(self, Xcand):
        candidate_mean, candidate_var = self.models[0].build_predict(Xcand)
        candidate_var = tf.maximum(candidate_var, stability)
        normal = tf.contrib.distributions.Normal(candidate_mean,
                                                 tf.sqrt(candidate_var))
        return normal.cdf(self.fmin, name=self.__class__.__name__)
コード例 #2
0
ファイル: ei.py プロジェクト: icouckuy/GPflowOpt
class ExpectedImprovement(Acquisition):
    """
    Expected Improvement acquisition function for single-objective global optimization.
    Introduced by (Mockus et al, 1975).

    Key reference:

    ::

       @article{Jones:1998,
            title={Efficient global optimization of expensive black-box functions},
            author={Jones, Donald R and Schonlau, Matthias and Welch, William J},
            journal={Journal of Global optimization},
            volume={13},
            number={4},
            pages={455--492},
            year={1998},
            publisher={Springer}
       }

    This acquisition function is the expectation of the improvement over the current best observation
    w.r.t. the predictive distribution. The definition is closely related to the :class:`.ProbabilityOfImprovement`,
    but adds a multiplication with the improvement w.r.t the current best observation to the integral.

    .. math::
       \\alpha(\\mathbf x_{\\star}) = \\int \\max(f_{\\min} - f_{\\star}, 0) \\, p( f_{\\star}\\,|\\, \\mathbf x, \\mathbf y, \\mathbf x_{\\star} ) \\, d f_{\\star}
    """
    def __init__(self, model):
        """
        :param model: GPflow model (single output) representing our belief of the objective
        """
        super(ExpectedImprovement, self).__init__(model)
        assert (isinstance(model, Model))
        self.fmin = DataHolder(np.zeros(1))
        self.setup()

    def setup(self):
        super(ExpectedImprovement, self).setup()
        # Obtain the lowest posterior mean for the previous - feasible - evaluations
        feasible_samples = self.data[0][
            self.highest_parent.feasible_data_index(), :]
        samples_mean, _ = self.models[0].predict_f(feasible_samples)
        self.fmin.set_data(np.min(samples_mean, axis=0))

    def build_acquisition(self, Xcand):
        # Obtain predictive distributions for candidates
        candidate_mean, candidate_var = self.models[0].build_predict(Xcand)
        candidate_var = tf.maximum(candidate_var, stability)

        # Compute EI
        normal = tf.contrib.distributions.Normal(candidate_mean,
                                                 tf.sqrt(candidate_var))
        t1 = (self.fmin - candidate_mean) * normal.cdf(self.fmin)
        t2 = candidate_var * normal.prob(self.fmin)
        return tf.add(t1, t2, name=self.__class__.__name__)
コード例 #3
0
class LinearTransform(DataTransform):
    """
    A simple linear transform of the form
    
    .. math::
       \\mathbf Y = (\\mathbf A \\mathbf X^{T})^{T} + \\mathbf b \\otimes \\mathbf 1_{N}^{T}

    """

    def __init__(self, A, b):
        """
        :param A: scaling matrix. Either a P-dimensional vector, or a P x P transformation matrix. For the latter, 
            the inverse and backward methods are not guaranteed to work as A must be invertible.
            
            It is also possible to specify a matrix with size P x Q with Q != P to achieve 
            a lower dimensional representation of X.
            In this case, A is not invertible, hence inverse and backward transforms are not supported.
        :param b: A P-dimensional offset vector.
        """
        super(LinearTransform, self).__init__()
        assert A is not None
        assert b is not None

        b = np.atleast_1d(b)
        A = np.atleast_1d(A)
        if len(A.shape) == 1:
            A = np.diag(A)

        assert (len(b.shape) == 1)
        assert (len(A.shape) == 2)

        self.A = DataHolder(A)
        self.b = DataHolder(b)

    def build_forward(self, X):
        return tf.matmul(X, tf.transpose(self.A)) + self.b

    @AutoFlow((float_type, [None, None]))
    def backward(self, Y):
        """
        Overwrites the default backward approach, to avoid an explicit matrix inversion.
        """
        return self.build_backward(Y)

    def build_backward(self, Y):
        """
        TensorFlow implementation of the inverse mapping
        """
        L = tf.cholesky(tf.transpose(self.A))
        XT = tf.cholesky_solve(L, tf.transpose(Y-self.b))
        return tf.transpose(XT)

    def build_backward_variance(self, Yvar):
        """
        Additional method for scaling variance backward (used in :class:`.Normalizer`). Can process both the diagonal
        variances returned by predict_f, as well as full covariance matrices.

        :param Yvar: size N x N x P or size N x P
        :return: Yvar scaled, same rank and size as input
        """
        rank = tf.rank(Yvar)
        # Because TensorFlow evaluates both fn1 and fn2, the transpose can't be in the same line. If a full cov
        # matrix is provided fn1 turns it into a rank 4, then tries to transpose it as a rank 3.
        # Splitting it in two steps however works fine.
        Yvar = tf.cond(tf.equal(rank, 2), lambda: tf.matrix_diag(tf.transpose(Yvar)), lambda: Yvar)
        Yvar = tf.cond(tf.equal(rank, 2), lambda: tf.transpose(Yvar, perm=[1, 2, 0]), lambda: Yvar)

        N = tf.shape(Yvar)[0]
        D = tf.shape(Yvar)[2]
        L = tf.cholesky(tf.square(tf.transpose(self.A)))
        Yvar = tf.reshape(Yvar, [N * N, D])
        scaled_var = tf.reshape(tf.transpose(tf.cholesky_solve(L, tf.transpose(Yvar))), [N, N, D])
        return tf.cond(tf.equal(rank, 2), lambda: tf.reduce_sum(scaled_var, axis=1), lambda: scaled_var)

    def assign(self, other):
        """
        Assign the parameters of another :class:`LinearTransform`. Can be useful to avoid graph
        re-compilation.

        :param other: :class:`.LinearTransform` object
        """
        assert other is not None
        assert isinstance(other, LinearTransform)
        self.A.set_data(other.A.value)
        self.b.set_data(other.b.value)

    def __invert__(self):
        A_inv = np.linalg.inv(self.A.value.T)
        return LinearTransform(A_inv, -np.dot(self.b.value, A_inv))

    def __str__(self):
        return 'XA + b'