コード例 #1
0
ファイル: kernels.py プロジェクト: joncarter1/GP-Regression
 def matern_32_covariance(x1, x2):
     l_scale, v_scale = self.hyperparams[0].exp()
     distance_matrix = compute_distance_matrix(x1, x2)**0.5
     return (v_scale**
             2) * (1 +
                   (3**0.5) * distance_matrix / l_scale) * torch.exp(
                       -(3**0.5) * distance_matrix / l_scale)
コード例 #2
0
ファイル: kernels.py プロジェクト: joncarter1/GP-Regression
 def periodic_covariance(x1, x2):
     l_scale, v_scale, period = self.hyperparams[0].exp(
     )  # Un-packing (log) hyper-parameters
     distance_matrix = compute_distance_matrix(x1, x2)**0.5
     return (v_scale**2) * torch.exp(-2 * (torch.sin(
         (pi / period) * distance_matrix)**2 / (l_scale**2)))
コード例 #3
0
ファイル: kernels.py プロジェクト: joncarter1/GP-Regression
 def iso_sqe_covariance(x1, x2):
     l_scale, v_scale = self.hyperparams[0].exp(
     )  # Un-packing (log) hyper-parameters
     squared_distance_matrix = compute_distance_matrix(x1, x2)
     return (v_scale**2) * torch.exp(-squared_distance_matrix /
                                     (2 * l_scale**2))
コード例 #4
0
ファイル: kernels.py プロジェクト: joncarter1/GP-Regression
 def quadratic_covariance(x1, x2):
     l_scale, v_scale, alpha = self.hyperparams[0].exp()
     squared_distance_matrix = compute_distance_matrix(x1, x2)
     return (v_scale**2) * (1 + squared_distance_matrix /
                            (2 * alpha * l_scale**2))**(-alpha)
コード例 #5
0
ファイル: kernels.py プロジェクト: joncarter1/GP-Regression
 def matern_12_covariance(x1, x2):
     """Matern co-variance function for nu = 1/2"""
     l_scale, v_scale = self.hyperparams[0].exp()
     distance_matrix = compute_distance_matrix(x1, x2)**0.5
     return (v_scale**2) * torch.exp(-distance_matrix / l_scale)