コード例 #1
0
ファイル: mkforecl.py プロジェクト: mahmoud-lsw/GRATools
def mkForeCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    from GRATools.utils.gFTools import get_cl_param
    cl_param_file = os.path.join(
        GRATOOLS_OUT, '%s_%s_parameters.txt' % (in_label, binning_label))
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        mask_file = data.MASK_FILE
        if type(mask_file) == list:
            mask_file = mask_file[i]
        mask = hp.read_map(mask_file)
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, _emean[i]))
        l_max = 1000
        _l = np.arange(l_max)
        flux_map_name = in_label + '_fore_%i-%i.fits' % (emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FORE, flux_map_name))
        flux_map_masked = hp.ma(flux_map)
        flux_map_masked.mask = np.logical_not(mask)
        fsky = 1.-(len(np.where(flux_map_masked.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='f$_{sky}$ = %.3f' % fsky,
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        print 'fsky = ', fsky
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        _cl = hp.sphtfunc.anafast(flux_map_masked.filled(), lmax=l_max-1, \
                                      iter=5)
        _cl_fit = hp.sphtfunc.anafast(flux_map_masked.filled(), iter=4)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                               %(out_label, binning_label))))
コード例 #2
0
ファイル: mkforecl.py プロジェクト: nmik/GRATools
def mkForeCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    from GRATools.utils.gFTools import get_cl_param
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt'
                                 %(in_label, binning_label))
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        mask_file = data.MASK_FILE
        if type(mask_file) == list:
            mask_file = mask_file[i]
        mask = hp.read_map(mask_file)
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        l_max= 1000
        _l = np.arange(l_max)
        flux_map_name = in_label+'_fore_%i-%i.fits'%(emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FORE, flux_map_name))
        flux_map_masked = hp.ma(flux_map)
        flux_map_masked.mask = np.logical_not(mask)
        fsky = 1.-(len(np.where(flux_map_masked.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(), title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            plt.show()
        print 'fsky = ', fsky
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        _cl = hp.sphtfunc.anafast(flux_map_masked.filled(), lmax=l_max-1, \
                                      iter=5)
        _cl_fit = hp.sphtfunc.anafast(flux_map_masked.filled(), iter=4)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_forecls.txt' \
                                               %(out_label, binning_label))))
コード例 #3
0
ファイル: drawsame_flux.py プロジェクト: nmik/GRATools
FLUX_LABELS = ['UCV (t56) w/o Foreground sub', 'UCV (t56) w/ Foreground sub']
#OUT_LABEL = 'Flux_t56_srcmask2_Rm-Rp'
#OUT_LABEL = 'Flux_types_srcmask2'
#OUT_LABEL = 'Flux_t56_srcmask2-1p5-weighted'
#OUT_LABEL = 'Flux_t56_maskweight_north-south'
#OUT_LABEL = 'Flux_t56_maskweight_east-west'
OUT_LABEL = 'Flux_t56_maskweight'

plt.figure(figsize=(10, 7), dpi=80)
from GRATools.utils.gDrawRef import ref_igrb_band
from GRATools.utils.gDrawRef import ref_igrb_noFGsub
leg, lab = ref_igrb_band()
igrb, lab_igrb = ref_igrb_noFGsub()
flux = []
for f in FLUX_FILES:
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, fsky = get_cl_param(f)
    
    spec = plt.errorbar(_emean, _f*_emean, fmt='o', markersize=3, \
                     elinewidth=1, xerr=(_emax-_emin)/2, yerr=_ferr*_emean)
    label = os.path.basename(f).replace('_parameters.txt', '')
    flux.append(spec)
plt.xscale("log")
plt.yscale("log")
plt.xlabel('Energy [MeV]')
plt.ylabel('E$^{2}$ $\cdot$ Flux [MeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$]')
plt.title(' Energy Spectrum')
plt.legend([igrb, leg]+flux, [lab_igrb, lab]+FLUX_LABELS, loc=3)
#overlay_tag()
save_current_figure(OUT_LABEL+'_ESpec.png')
コード例 #4
0
ファイル: mkcsi.py プロジェクト: nmik/GRATools
def mkCsi(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])
    ncores = kwargs['ncores']
    psf_file = data.PSF_REF_FILE
    p = multiprocessing.Pool(processes=ncores)
    logger.info('Starting Csi analysis...')
    in_label = data.IN_LABEL
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    csi_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_csi.txt' \
                                   %(out_label, binning_label)), 'w')
    psf_ref = get_psf_ref(psf_file)
    #psf_ref.plot(show=False)
    #plt.xscale('log')
    #plt.yscale('log')
    #plt.show()
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        cont_ang = np.radians(psf_ref(_emean[i]))
        csi_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        flux_map_name = in_label+'_flux_%i-%i.fits'%(emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name))
        flux_map = udgrade_as_psf(flux_map, cont_ang)
        R = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name))
        R = udgrade_as_psf(R, cont_ang)
        fsky = 1.-(len(np.where(flux_map == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        logger.info('fsky = %f'%fsky)
        npix = len(flux_map)
        nside = hp.npix2nside(npix)        
        _unmask = np.where(flux_map != hp.UNSEEN)[0]
        npix_unmask = len(_unmask)
        Imean = _f[i]
        dI = flux_map - Imean
        dR = R - Imean
        R = permute_unmasked_pix(R)
        dR = permute_unmasked_pix(dR)
        th_bins = data.TH_BINNING
        theta = []
        for thmin, thmax in zip(th_bins[:-1], th_bins[1:]):
            th_mean = np.sqrt(thmin*thmax)
            theta.append(th_mean)
        theta = np.array(theta)
        logger.info('Computing Csi...')
        diri = hp.pixelfunc.pix2ang(nside, _unmask)
        veci = hp.rotator.dir2vec(diri)
        xyz = np.array([(veci[0][i], veci[1][i], veci[2][i]) 
                        for i in range(0, len(veci[0]))])
        args = zip(_unmask, xyz, [dI]*npix_unmask, [dR]*npix_unmask,
                   [nside]*npix_unmask)
        #args = zip(_unmask, xyz, [flux_map]*npix_unmask, [R]*npix_unmask, 
        #           [nside]*npix_unmask)
        a = np.array(p.map(csi_compute, args))
        SUMij_list = a[:, 0]   
        SUMf_list = a[:, 1]
        SUMR_list = a[:, 2]
        SUMij_th = []
        SUMf_th = []
        SUMR_th = []
        for i, s in enumerate(SUMij_list[0]):
            SUMij_th.append(np.sum(SUMij_list[:, i]))
            SUMf_th.append(np.sum(SUMf_list[:, i]))
            SUMR_th.append(np.sum(SUMR_list[:, i]))
        csi = (np.array(SUMij_th))/np.array(SUMf_th)#-Imean**2
        r = (np.array(SUMR_th))/np.array(SUMf_th)#-Imean**2
        csi_txt.write('THETA\t%s\n'%str(list(theta)).replace('[',''). \
                          replace(']','').replace(', ', ' ')) 
        csi_txt.write('CSI\t%s\n'%str(list(csi)).replace('[',''). \
                          replace(']','').replace(', ', ' '))
        csi_txt.write('R\t%s\n'%str(list(r)).replace('[',''). \
                          replace(']','').replace(', ', ' '))
    csi_txt.close()
    p.close()
    p.join()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_csi.txt' \
                                               %(out_label, binning_label))))
コード例 #5
0
ファイル: mkcl.py プロジェクト: mahmoud-lsw/GRATools
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL
    mask_label = data.MASK_LABEL
    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt' % out_wb_label)
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        _l = np.arange(0, 1000)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        from GRATools.utils.gWindowFunc import get_wbeam
        wb = get_wbeam(out_wb_txt)
    save_current_figure('Wbeam_%s.png' % out_wb_label, clear=True)

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    in_label = in_label + '_' + mask_label
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    mask = hp.read_map(mask_file)
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_cls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        gamma = data.WEIGHT_SPEC_INDEX
        Im = (1 / (1 - gamma)) * (emax**(1 - gamma) -
                                  emin**(1 - gamma)) / (emax - emin)
        eweightedmean = np.power(1 / Im, 1 / gamma)
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, eweightedmean))
        l_max = 1000
        _l = np.arange(l_max)
        wb_en = wb.hslice(eweightedmean)(_l)
        flux_map_name = in_label + '_flux_%i-%i.fits' % (emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name))
        flux_map_masked = hp.ma(flux_map)
        flux_map_masked.mask = np.logical_not(mask)
        fsky = 1.-(len(np.where(flux_map_masked.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='f$_{sky}$ = %.3f' % fsky,
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        print 'fsky = ', fsky
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        _cl = hp.sphtfunc.anafast(flux_map_masked.filled(), lmax=l_max-1, \
                                      iter=5)
        _cl_fit = hp.sphtfunc.anafast(flux_map_masked.filled(), iter=4)
        cn_fit = np.average(_cl_fit[-500:-100] / fsky) / len(
            _cl_fit[-500:-100])
        print 'cn fit = ', cn_fit
        print 'cn poisson = ', _cn[i]
        cn = _cn[i]
        wl = wb_en * wpix
        _cl = (_cl / fsky - cn) / (wl**2)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        _cl_err = np.sqrt(2. / ((2 * _l + 1) * fsky)) * (_cl + (cn / wl**2))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_cls.txt' \
                                               %(out_label, binning_label))))
コード例 #6
0
ファイル: mkcross.py プロジェクト: nmik/GRATools
def mkCross(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL
    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label)
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        _l = np.arange(0, 1000)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        from GRATools.utils.gWindowFunc import get_wbeam
        wb = get_wbeam(out_wb_txt)
    save_current_figure('Wbeam_%s.png'%out_wb_label, clear=True)

    logger.info('Starting Cl analysis...')
    in_label1 = data.IN_LABEL1
    in_label2 = data.IN_LABEL2
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    mask = hp.read_map(mask_file)
    cl_param_file1 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label1, binning_label))
    cl_param_file2 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                      %(in_label2, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file1)
    _emin2, _emax2, _emean2, _f2, _ferr2, _cn2, _fsky2 = get_cl_param(cl_param_file2)
    cross_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_cross.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        gamma = data.WEIGHT_SPEC_INDEX
        Im = (1/(1-gamma))*(emax**(1-gamma)-emin**(1-gamma))/(emax-emin)
        eweightedmean = np.power(1/Im, 1/gamma)
        cross_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, eweightedmean))
        l_max= 1000
        _l = np.arange(l_max)
        wb_en = wb.hslice(eweightedmean)(_l)
        flux_map_name1 = in_label1+'_flux_%i-%i.fits'%(emin, emax)
        flux_map_name2 = in_label2+'_flux_%i-%i.fits'%(emin, emax)
        flux_map1 = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name1))
        flux_map2 = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name2))
        flux_map_masked1 = hp.ma(flux_map1)
        flux_map_masked1.mask = np.logical_not(mask)
        flux_map_masked2 = hp.ma(flux_map2)
        flux_map_masked2.mask = np.logical_not(mask)
        fsky1 = 1.-(len(np.where(flux_map_masked1.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map1)))
        fsky2 = 1.-(len(np.where(flux_map_masked2.filled() == hp.UNSEEN)[0])/\
                       float(len(flux_map2)))
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked1.filled(), title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            plt.show()
        print 'fsky = ', fsky1, fsky2
        fsky = np.sqrt(fsky1*fsky2)
        nside1 = hp.npix2nside(len(flux_map1))
        nside2 = hp.npix2nside(len(flux_map1))
        wpix1 = hp.sphtfunc.pixwin(nside1)[:l_max]
        wpix2 = hp.sphtfunc.pixwin(nside2)[:l_max]
        _cl_cross = hp.sphtfunc.anafast(flux_map_masked1.filled(),
                                        flux_map_masked2.filled(), lmax=l_max-1, \
                                             iter=5)
        wl2 = wb_en*wb_en*wpix1*wpix2
        _cl_cross = (_cl_cross/fsky)/(wl2)
        cross_txt.write('Cl\t%s\n'%str(list(_cl_cross)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        _cl_cross_err = np.sqrt(2./((2*_l+1)*fsky))*(_cl_cross)
        cross_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_cross_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cross_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_cross.txt' \
                                               %(out_label, binning_label))))
コード例 #7
0
ファイル: mkpolspicecrosscl.py プロジェクト: nmik/GRATools
def mkCross(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])

    lmax = data.LMAX
    _l = np.arange(0, lmax)
    gamma = data.WEIGHT_SPEC_INDEX
    out_label = data.OUT_LABEL
    logger.info('Calculating energy spectrum...')
    from GRATools.utils.gWindowFunc import get_powerlaw_spline
    energy_spec = get_powerlaw_spline(gamma)

    logger.info('Calculating PSF with gtpsf 1...')
    dict_gtpsf1 = data.DICT_GTPSF1
    logger.info('Calculating Wbeam Function1...')
    out_wb_label1 = data.OUT_W_LABEL1
    out_wb_txt1 = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label1)
    in_label1 = data.IN_LABEL1
    if not os.path.exists(out_wb_txt1):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf1)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file1 = data.PSF_FILE1
        psf1 = get_psf(psf_file1)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb1 = build_wbeam(psf1, _l, out_wb_txt1)
    else:
        pass
    logger.info('Calculating PSF with gtpsf 2...')
    dict_gtpsf2 = data.DICT_GTPSF2
    logger.info('Calculating Wbeam Function2...')
    out_wb_label2 = data.OUT_W_LABEL2
    out_wb_txt2 = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label2)
    in_label2 = data.IN_LABEL2
    if not os.path.exists(out_wb_txt2):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf2)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file2 = data.PSF_FILE2
        psf2 = get_psf(psf_file2)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb2 = build_wbeam(psf2, _l, out_wb_txt2)
    else:
        pass
    
    logger.info('Starting Cross analysis...')
    mask_label1 = data.MASK_LABEL1
    mask_label2 = data.MASK_LABEL2
    in_label1 = in_label1 + '_' + mask_label1
    in_label2 = in_label2 + '_' + mask_label2
    binning_label1 = data.BINNING_LABEL1
    binning_label2 = data.BINNING_LABEL2
    mask_file1 = data.MASK_FILE1
    mask_file2 = data.MASK_FILE2
    cl_param_file1 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label1, binning_label1))
    cl_param_file2 = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label2, binning_label2))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f1, _ferr1, _cn1, _fsky1 = \
        get_cl_param(cl_param_file1)
    _emin, _emax, _emean, _f2, _ferr2, _cn2, _fsky2 = \
        get_cl_param(cl_param_file2)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_polspicecross.txt' \
                                   %(out_label, binning_label1)), 'w')
    from GRATools.utils.gWindowFunc import get_integral_wbeam
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        mask_f1 = mask_file1
        mask_f2 = mask_file2
        if type(mask_file1) == list:
            mask_f1 = mask_file1[i]
        if type(mask_file2) == list:
            mask_f2 = mask_file2[i]
        mask1 = hp.read_map(mask_f1)
        mask2 = hp.read_map(mask_f2)
        wb1_en = get_integral_wbeam(out_wb_txt1, energy_spec, emin, emax)
        wb2_en = get_integral_wbeam(out_wb_txt2, energy_spec, emin, emax) 
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        l_max = lmax
        _l = np.arange(l_max)
        wb1_en = wb1_en(_l)
        wb2_en = wb2_en(_l)
        flux_map_name1 = in_label1+'_flux_%i-%i.fits'%(emin, emax)
        flux_map_name2 = in_label2+'_flux_%i-%i.fits'%(emin, emax)
        flux_map_f1 = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name1)
        flux_map_f2 = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name2)
        flux_map_f_mdclean1 = remove_monopole_dipole(flux_map_f1)
        flux_map_f_mdclean2 = remove_monopole_dipole(flux_map_f2)
        flux_map1 = hp.read_map(flux_map_f_mdclean1)
        flux_map2 = hp.read_map(flux_map_f_mdclean2)
        fsky1 = _fsky1[i]
        fsky2 = _fsky2[i]
        cn = 0.
        if kwargs['show'] == True:
            hp.mollview(flux_map1*mask1, title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            hp.mollview(flux_map2*mask2, title='f$_{sky}$ = %.3f'%fsky,
                        min=1e-7, max=1e-4, norm='log')
            plt.show()
        logger.info('fsky1 = %.3f'%fsky1)
        logger.info('fsky2 = %.3f'%fsky2)
        nside1 = hp.npix2nside(len(flux_map1))
        nside2 = hp.npix2nside(len(flux_map2))
        wpix1 = hp.sphtfunc.pixwin(nside1)[:l_max]
        wpix2 = hp.sphtfunc.pixwin(nside2)[:l_max]
        out_name = '%s_%i-%i' %(out_label, emin, emax)
        out_folder =  os.path.join(GRATOOLS_OUT, 'output_pol')
        logger.info('cn poisson = %e'%cn)
        wl = np.sqrt(wb1_en*wpix1*wb2_en*wpix2)
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,'%s_cl.txt'%out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,'%s_clraw.txt'%out_name)
            if key == 'covfileout':
                 pol_dict[key] = os.path.join(out_folder,'%s_cov.fits'%out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f_mdclean1
            if key == 'maskfile':
                pol_dict[key] = mask_f1
            if key == 'mapfile2':
                pol_dict[key] = flux_map_f_mdclean2
            if key == 'maskfile2':
                pol_dict[key] = mask_f2
        config_file_name = 'pol_%s'%(out_name)
        if os.path.exists(os.path.join(out_folder,'%s_cl.txt'%out_name)) and \
                os.path.exists(os.path.join(out_folder,'%s_cov.fits'%out_name)):
            logger.info('ATT: Retriving power spectrum...')
            _l, _cl, _clerr = pol_cl_parse(os.path.join(out_folder,
                                                        '%s_cl.txt'%out_name),
                                           os.path.join(out_folder,
                                                        '%s_cov.fits'%out_name),
                                           raw_corr=(cn, wl),
                                           rebin=True)
            logger.info('... and covariance matrix.')
            _cov = pol_cov_parse(os.path.join(out_folder,
                                              '%s_cov.fits'%out_name),
                                 wl_array=wl,
                                 rebin=True, show=True)
        else:
            _l, _cl, _clerr, _cov = pol_cl_calculation(pol_dict, 
                                                       config_file_name,
                                                       raw_corr=(cn, wl),
                                                       rebin=True,show=True)
        cl_txt.write('multipole\t%s\n'%str(list(_l)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_clerr)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT,'%s_%s_polspicecls.txt'
                                           %(out_label, binning_label1))))
コード例 #8
0
ファイル: mkcsi.py プロジェクト: mahmoud-lsw/GRATools
def mkCsi(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])
    ncores = kwargs['ncores']
    psf_file = data.PSF_REF_FILE
    p = multiprocessing.Pool(processes=ncores)
    logger.info('Starting Csi analysis...')
    in_label = data.IN_LABEL
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    csi_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_csi.txt' \
                                   %(out_label, binning_label)), 'w')
    psf_ref = get_psf_ref(psf_file)
    #psf_ref.plot(show=False)
    #plt.xscale('log')
    #plt.yscale('log')
    #plt.show()
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        cont_ang = np.radians(psf_ref(_emean[i]))
        csi_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, _emean[i]))
        flux_map_name = in_label + '_flux_%i-%i.fits' % (emin, emax)
        flux_map = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name))
        flux_map = udgrade_as_psf(flux_map, cont_ang)
        R = hp.read_map(os.path.join(GRATOOLS_OUT_FLUX, flux_map_name))
        R = udgrade_as_psf(R, cont_ang)
        fsky = 1.-(len(np.where(flux_map == hp.UNSEEN)[0])/\
                       float(len(flux_map)))
        logger.info('fsky = %f' % fsky)
        npix = len(flux_map)
        nside = hp.npix2nside(npix)
        _unmask = np.where(flux_map != hp.UNSEEN)[0]
        npix_unmask = len(_unmask)
        Imean = _f[i]
        dI = flux_map - Imean
        dR = R - Imean
        R = permute_unmasked_pix(R)
        dR = permute_unmasked_pix(dR)
        th_bins = data.TH_BINNING
        theta = []
        for thmin, thmax in zip(th_bins[:-1], th_bins[1:]):
            th_mean = np.sqrt(thmin * thmax)
            theta.append(th_mean)
        theta = np.array(theta)
        logger.info('Computing Csi...')
        diri = hp.pixelfunc.pix2ang(nside, _unmask)
        veci = hp.rotator.dir2vec(diri)
        xyz = np.array([(veci[0][i], veci[1][i], veci[2][i])
                        for i in range(0, len(veci[0]))])
        args = zip(_unmask, xyz, [dI] * npix_unmask, [dR] * npix_unmask,
                   [nside] * npix_unmask)
        #args = zip(_unmask, xyz, [flux_map]*npix_unmask, [R]*npix_unmask,
        #           [nside]*npix_unmask)
        a = np.array(p.map(csi_compute, args))
        SUMij_list = a[:, 0]
        SUMf_list = a[:, 1]
        SUMR_list = a[:, 2]
        SUMij_th = []
        SUMf_th = []
        SUMR_th = []
        for i, s in enumerate(SUMij_list[0]):
            SUMij_th.append(np.sum(SUMij_list[:, i]))
            SUMf_th.append(np.sum(SUMf_list[:, i]))
            SUMR_th.append(np.sum(SUMR_list[:, i]))
        csi = (np.array(SUMij_th)) / np.array(SUMf_th)  #-Imean**2
        r = (np.array(SUMR_th)) / np.array(SUMf_th)  #-Imean**2
        csi_txt.write('THETA\t%s\n'%str(list(theta)).replace('[',''). \
                          replace(']','').replace(', ', ' '))
        csi_txt.write('CSI\t%s\n'%str(list(csi)).replace('[',''). \
                          replace(']','').replace(', ', ' '))
        csi_txt.write('R\t%s\n'%str(list(r)).replace('[',''). \
                          replace(']','').replace(', ', ' '))
    csi_txt.close()
    p.close()
    p.join()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT, '%s_%s_csi.txt' \
                                               %(out_label, binning_label))))
コード例 #9
0
ファイル: drawsame_flux.py プロジェクト: mahmoud-lsw/GRATools
FLUX_LABELS = ['UCV (t56) w/o Foreground sub', 'UCV (t56) w/ Foreground sub']
#OUT_LABEL = 'Flux_t56_srcmask2_Rm-Rp'
#OUT_LABEL = 'Flux_types_srcmask2'
#OUT_LABEL = 'Flux_t56_srcmask2-1p5-weighted'
#OUT_LABEL = 'Flux_t56_maskweight_north-south'
#OUT_LABEL = 'Flux_t56_maskweight_east-west'
OUT_LABEL = 'Flux_t56_maskweight'

plt.figure(figsize=(10, 7), dpi=80)
from GRATools.utils.gDrawRef import ref_igrb_band
from GRATools.utils.gDrawRef import ref_igrb_noFGsub
leg, lab = ref_igrb_band()
igrb, lab_igrb = ref_igrb_noFGsub()
flux = []
for f in FLUX_FILES:
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, fsky = get_cl_param(f)

    spec = plt.errorbar(_emean, _f*_emean, fmt='o', markersize=3, \
                     elinewidth=1, xerr=(_emax-_emin)/2, yerr=_ferr*_emean)
    label = os.path.basename(f).replace('_parameters.txt', '')
    flux.append(spec)
plt.xscale("log")
plt.yscale("log")
plt.xlabel('Energy [MeV]')
plt.ylabel('E$^{2}$ $\cdot$ Flux [MeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$]')
plt.title(' Energy Spectrum')
plt.legend([igrb, leg] + flux, [lab_igrb, lab] + FLUX_LABELS, loc=3)
#overlay_tag()
save_current_figure(OUT_LABEL + '_ESpec.png')
コード例 #10
0
ファイル: mkpolspicecl.py プロジェクト: mahmoud-lsw/GRATools
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])
    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL

    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt' % out_wb_label)
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        _l = np.arange(0, 1000)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        from GRATools.utils.gWindowFunc import get_wbeam
        wb = get_wbeam(out_wb_txt)
    save_current_figure('Wbeam_%s.png' % out_wb_label, clear=True)

    logger.info('Starting Cl analysis...')
    in_label = data.IN_LABEL
    mask_label = data.MASK_LABEL
    in_label = in_label + '_' + mask_label
    out_label = data.OUT_LABEL
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_polspicecls.txt' \
                                   %(out_label, binning_label)), 'w')
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...' % (emin, emax))
        mask_f = mask_file
        if type(mask_file) == list:
            mask_f = mask_file[i]
        gamma = data.WEIGHT_SPEC_INDEX
        Im = (1 / (1 - gamma)) * (emax**(1 - gamma) -
                                  emin**(1 - gamma)) / (emax - emin)
        eweightedmean = np.power(1 / Im, 1 / gamma)
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n' % (emin, emax, eweightedmean))
        l_max = 1000
        _l = np.arange(l_max)
        wb_en = wb.hslice(eweightedmean)(_l)
        flux_map_name = in_label + '_flux_%i-%i.fits' % (emin, emax)
        flux_map_f = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name)
        flux_map = hp.read_map(flux_map_f)
        fsky = _fsky[i]
        if kwargs['show'] == True:
            hp.mollview(flux_map_masked.filled(),
                        title='f$_{sky}$ = %.3f' % fsky,
                        min=1e-7,
                        max=1e-4,
                        norm='log')
            plt.show()
        logger.info('fsky = ' % fsky)
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        out_name = '%s_%i-%i' % (out_label, emin, emax)
        out_folder = os.path.join(GRATOOLS_OUT, 'output_pol')
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_cl.txt' % out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_clraw.txt' % out_name)
            if key == 'covfileout':
                pol_dict[key] = os.path.join(out_folder,
                                             '%s_cov.fits' % out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f
            if key == 'maskfile':
                pol_dict[key] = mask_f
        config_file_name = 'pol_%s' % (out_name)
        _l, _cl, _cl_err = pol_cl_calculation(pol_dict, config_file_name)
        logger.info('cn poisson = %e' % _cn[i])
        cn = _cn[i]
        wl = wb_en * wpix
        _cl = (_cl[:l_max] - cn) / (wl**2)
        _cl_err = _cl_err[:l_max] / (wl**2)
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        #_cl_err = np.sqrt(2./((2*_l+1)*fsky))*(_cl+(cn/wl**2))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_cl_err)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info(
        'Created %s' %
        (os.path.join(GRATOOLS_OUT, '%s_%s_polspicecls.txt' %
                      (out_label, binning_label))))
コード例 #11
0
              #os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t56_srcmask1p5_13bins_parameters.txt'),
              #os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t56_maskweighted_13bins_parameters.txt'),
              #os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t0_13bins_parameters.txt'),
              #os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t56_Rm_13bins_parameters.txt'),
              #os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t56_Rp_13bins_parameters.txt')
              os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t4_srcmask2_13bins_parameters.txt'),
              os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t32_srcmask2_13bins_parameters.txt'),
              os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t1_srcmask2_13bins_parameters.txt'),
              os.path.join(GRATOOLS_OUT, 'Allyrs_UCV_t2_srcmask2_13bins_parameters.txt')
              ]
FLUX_LABELS = ['UCV (t56) PSF0', 'UCV (t56) PSF3', 'UCV (t56) FRONT', 'UCV (t56) BACK']
#OUT_LABEL = 'Flux_evtypes'

plt.figure(figsize=(10, 7), dpi=80)
from GRATools.utils.gFTools import get_cl_param
_emin, _emax, _emean, _f_ref, _ferr_ref, _cn_ref, fsky_ref = get_cl_param(FLUX_REF)
plt.plot((_emin[0], _emax[-1]), (0, 0), '--', color='gray')
plt.plot((100, 1000000), (0.1, 0.1), '-', color='silver', linewidth=1.0)
plt.plot((100, 1000000), (-0.1, -0.1), '-', color='silver', linewidth=1.0)
flux, flux_label = [], []
plt.title('Flux Residuals - Ref.: %s'%FLUX_REF_LABEL)
for f in FLUX_FILES:
    _emin, _emax, _emean, _f, _ferr, _cn, fsky = get_cl_param(f)
    #print _ferr
    _res = (_f_ref - _f)/_f_ref
    _res_err = np.sqrt(((_f/_f_ref**2)*_ferr_ref)**2+(_ferr/_f_ref)**2)
    spec = plt.errorbar(_emean, _res, fmt='o', markersize=3, \
                     elinewidth=1, xerr=(_emax-_emin)/2, yerr=_res_err)
    flux.append(spec)
plt.xscale("log")
#plt.yscale("log")
コード例 #12
0
ファイル: mkpolspicecl.py プロジェクト: nmik/GRATools
def mkCl(**kwargs):
    """                                      
    """
    get_var_from_file(kwargs['config'])
    
    lmax = data.LMAX
    _l = np.arange(0, lmax)
    gamma = data.WEIGHT_SPEC_INDEX
    out_label = data.OUT_LABEL
    logger.info('Calculating energy spectrum...')
    from GRATools.utils.gWindowFunc import get_powerlaw_spline
    energy_spec = get_powerlaw_spline(gamma)

    logger.info('Calculating PSF with gtpsf...')
    dict_gtpsf = data.DICT_GTPSF
    logger.info('Calculating Wbeam Function...')
    out_wb_label = data.OUT_W_LABEL 
    out_wb_txt = os.path.join(GRATOOLS_OUT, 'Wbeam_%s.txt'%out_wb_label)
    in_label = data.IN_LABEL
    if not os.path.exists(out_wb_txt):
        from GRATools.utils.ScienceTools_ import gtpsf
        gtpsf(dict_gtpsf)
        from GRATools.utils.gWindowFunc import get_psf
        psf_file = data.PSF_FILE
        psf = get_psf(psf_file)
        #_l = np.arange(0, 1500)
        from GRATools.utils.gWindowFunc import build_wbeam
        wb = build_wbeam(psf, _l, out_wb_txt)
    else:
        pass

    logger.info('Starting Cl analysis...')
    mask_label = data.MASK_LABEL
    in_label = in_label + '_' + mask_label
    binning_label = data.BINNING_LABEL
    mask_file = data.MASK_FILE
    cl_param_file = os.path.join(GRATOOLS_OUT, '%s_%s_parameters.txt' \
                                     %(in_label, binning_label))
    from GRATools.utils.gFTools import get_cl_param
    _emin, _emax, _emean, _f, _ferr, _cn, _fsky = get_cl_param(cl_param_file)
    cl_txt = open(os.path.join(GRATOOLS_OUT, '%s_%s_polspicecls.txt' \
                                   %(out_label, binning_label)), 'w')
    monopoles, monopoles_err = [], []
    dipol_vectors = []
    from GRATools.utils.gWindowFunc import get_integral_wbeam
    for i, (emin, emax) in enumerate(zip(_emin, _emax)):
        logger.info('Considering bin %.2f - %.2f ...'%(emin, emax))
        mask_f = mask_file
        if type(mask_file) == list:
            mask_f = mask_file[i]
        #mask = hp.read_map(mask_f)
        wb_en = get_integral_wbeam(out_wb_txt, energy_spec, emin, emax)
        cl_txt.write('ENERGY\t %.2f %.2f %.2f\n'%(emin, emax, _emean[i]))
        l_max= lmax
        _l = np.arange(l_max)
        wb_en = wb_en(_l)
        # monopole and dipole cleaning from MASKED map, bad value = UNSEEN
        flux_map_name = in_label+'_fluxmasked_%i-%i.fits'%(emin, emax)
        flux_map_f = os.path.join(GRATOOLS_OUT_FLUX, flux_map_name)
        flux_map_f_mdclean, mono, dipo = remove_monopole_dipole(flux_map_f)
        monopoles.append(mono)
        mono_err = np.sqrt(2/_fsky[i])*(mono+_cn[i])
        monopoles_err.append(mono_err)
        dipol_vectors.append(dipo)
        logger.info('Monopole_term = %e +- %e'%(mono, mono_err))
        logger.info('Dipole vector = %s' %(str(dipo)))
        # Up to l=n cleaning from MASKED map (correction for fsky discarded)
        if kwargs['multiclean'] is not None:
            flux_map_f_multiclean =  remove_multipole(flux_map_f_mdclean, 
                                        lmax=kwargs['multiclean'])
            flux_map = hp.read_map(flux_map_f_multiclean)
        else:
            flux_map = hp.read_map(flux_map_f_mdclean)
        fsky = _fsky[i]
        cn = _cn[i]
        if kwargs['show'] == True:
            hp.mollview(flux_map, title='f$_{sky}$ = %.3f'%fsky)
            plt.show()
        logger.info('fsky = '%fsky)
        nside = hp.npix2nside(len(flux_map))
        wpix = hp.sphtfunc.pixwin(nside)[:l_max]
        out_name = '%s_%i-%i' %(out_label, emin, emax)
        out_folder =  os.path.join(GRATOOLS_OUT, 'output_pol')
        logger.info('cn poisson = %e'%cn)
        wl = wb_en*wpix
        if not os.path.exists(out_folder):
            os.makedirs(out_folder)
        pol_dict = data.POLCEPICE_DICT
        for key in pol_dict:
            if key == 'clfile':
                pol_dict[key] = os.path.join(out_folder,'%s_cl.txt'%out_name)
            if key == 'cl_outmap_file':
                pol_dict[key] = os.path.join(out_folder,'%s_clraw.txt'%out_name)
            if key == 'covfileout':
                 pol_dict[key] = os.path.join(out_folder,'%s_cov.fits'%out_name)
            if key == 'mapfile':
                pol_dict[key] = flux_map_f_mdclean
            if key == 'maskfile':
                pol_dict[key] = mask_f
        config_file_name = 'pol_%s'%(out_name)
        if os.path.exists(os.path.join(out_folder,'%s_cl.txt'%out_name)) and \
                os.path.exists(os.path.join(out_folder,'%s_cov.fits'%out_name)):
            logger.info('ATT: Retriving power spectrum...')
            _l, _cl, _clerr = pol_cl_parse(os.path.join(out_folder,
                                                        '%s_cl.txt'%out_name),
                                           os.path.join(out_folder,
                                                        '%s_cov.fits'%out_name),
                                           raw_corr=(cn, wl),
                                           rebin=True)
            logger.info('... and covariance matrix.')
            _cov = pol_cov_parse(os.path.join(out_folder,
                                              '%s_cov.fits'%out_name),
                                 wl_array=wl,
                                 rebin=True, show=True)
        else:
            _l, _cl, _clerr, _cov = pol_cl_calculation(pol_dict, 
                                                  config_file_name,
                                                  raw_corr=(cn, wl),
                                                  rebin=True,show=True) 
        cl_txt.write('multipole\t%s\n'%str(list(_l)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl\t%s\n'%str(list(_cl)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
        cl_txt.write('Cl_ERR\t%s\n\n'%str(list(_clerr)).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.write('Monopoles\t%s\n\n'%str(monopoles).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.write('Monopoles_ERR\t%s\n\n'%str(monopoles_err).replace('[',''). \
                         replace(']','').replace(', ', ' '))
    cl_txt.close()
    logger.info('Created %s'%(os.path.join(GRATOOLS_OUT,'%s_%s_polspicecls.txt'
                                           %(out_label, binning_label))))