コード例 #1
0
ファイル: TunedDataReader.py プロジェクト: tnt-wolve/saphyra
    def load(self, fList):
        from Gaugi import load
        from Gaugi import csvStr2List, expandFolders, progressbar
        fList = csvStr2List(fList)
        fList = expandFolders(fList)
        from saphyra import TunedData_v1
        self._obj = TunedData_v1()

        for inputFile in progressbar(fList,
                                     len(fList),
                                     prefix="Reading tuned data collection...",
                                     logger=self._logger):

            raw = load(inputFile)
            # get the file version
            version = raw['__version']
            # the current file version
            if version == 1:
                obj = TunedData_v1.fromRawObj(raw)
                self._obj.merge(obj)
            else:
                # error because the file does not exist
                self._logger.fatal('File version (%d) not supported in (%s)',
                                   version, inputFile)

        # return the list of keras models
        return self._obj
コード例 #2
0
 def __call__(self, inputFiles):
     obj = None
     for idx, f in progressbar(enumerate(inputFiles),
                               len(inputFiles),
                               'Reading...: ',
                               60,
                               logger=self._logger):
         #d = dict(np.load(f,allow_pickle=True))
         d = dict(load(f))
         obj = self.merge(d, obj, self._skip_these_keys) if obj else d
     return obj
コード例 #3
0
ファイル: utils.py プロジェクト: ringer-atlas/prometheus
def GetHistogramRootPaths(triggerList,
                          removeInnefBefore=False,
                          is_emulation=False,
                          logger=None):
    plot_names = ['et', 'eta', 'mu']
    level_names = ['L1Calo', 'L2Calo', 'L2', 'EFCalo', 'HLT']
    levels_input = ['L1Calo', 'L1Calo', 'L1Calo', 'L2', 'EFCalo']
    from Gaugi import progressbar
    paths = []
    keys = []
    entries = len(triggerList)
    step = int(entries / 100) if int(entries / 100) > 0 else 1
    for trigItem in progressbar(triggerList,
                                entries,
                                step=step,
                                logger=logger,
                                prefix='Making paths...'):
        isL1 = True if trigItem.startswith('L1_') else False
        these_level_names = ['L1Calo'] if isL1 else level_names
        ### Retrieve all paths
        for idx, level in enumerate(these_level_names):
            for histname in plot_names:
                if not isL1 and 'et' == histname and is_high_et(trigItem):
                    histname = 'highet'
                if is_emulation:
                    histpath = 'HLT/Egamma/Expert/{TRIGGER}/Emulation/{LEVEL}/{HIST}'
                else:
                    histpath = 'HLT/Egamma/Expert/{TRIGGER}/Efficiency/{LEVEL}/{HIST}'
                paths.append(
                    histpath.format(TRIGGER=trigItem,
                                    HIST='match_' + histname,
                                    LEVEL=level))
                if removeInnefBefore:
                    paths.append(
                        histpath.format(
                            TRIGGER=trigItem,
                            HIST=('match_' +
                                  histname if idx != 0 else histname),
                            LEVEL=levels_input[idx]))
                else:
                    paths.append(
                        histpath.format(TRIGGER=trigItem,
                                        HIST=histname,
                                        LEVEL='L1Calo'))
                if 'highet' == histname: histname = 'et'
                keys.append(trigItem + '_' + level + '_match_' + histname)
                keys.append(trigItem + '_' + level + '_' + histname)
    # Loop over triggers
    return paths, keys
コード例 #4
0
    def fill(self, generator , paths):

        hists = { branch:[[None for _ in range(len(self.__etabins)-1)] for __ in range(len(self.__etbins)-1)] for branch in self.__hist.keys()}

        # Prepare all histograms
        for et_bin, eta_bin in progressbar(product(range(len(self.__etbins)-1),range(len(self.__etabins)-1)),
                                           (len(self.__etbins)-1)*(len(self.__etabins)-1), prefix = "Reading... " ):

            data, features = generator(paths[et_bin][eta_bin])
            for branch, hist in self.__hist.items(): 
                th1 = TH1F( branch+'_et'+str(et_bin)+'_eta'+str(eta_bin), "",  hist['bins'], hist['xmin'], hist['xmax'] )
                values = data[:, features.index(branch)] 
                w = array.array( 'd', np.ones_like(values) )
                th1.FillN( len(values), array.array('d',  values.tolist()),  w)
                hists[branch][et_bin][eta_bin] = th1

        return hists
コード例 #5
0
    def create(self,
               volume,
               taskname,
               dataFile,
               configFile,
               secondaryDS,
               execCommand,
               queue='gpu',
               bypass=False,
               dry_run=False,
               force_dummy=False):

        # check task policy (user.username)
        if taskname.split('.')[0] != 'user':
            return (StatusCode.FATAL,
                    'The task name must starts with user.$USER.taskname.')

        # check task policy (username must exist into the database)
        username = taskname.split('.')[1]
        if not username in [
                user.getUserName() for user in self.__db.getAllUsers()
        ]:
            return (StatusCode.FATAL,
                    'The username does not exist into the database.')

        if self.__db.getUser(username).getTask(taskname) is not None:
            return (StatusCode.FATAL,
                    "The task exist into the database. Abort.")

        #
        # Check if all datasets are registered into the database
        #

        if self.__db.getDataset(username, dataFile) is None:
            return (
                StatusCode.FATAL,
                "The file (%s) does not exist into the database. Should be registry first."
                % dataFile)

        if self.__db.getDataset(username, configFile) is None:
            return (
                StatusCode.FATAL,
                "The config file (%s) does not exist into the database. Should be registry first."
                % configFile)

        secondaryDS = eval(secondaryDS)
        for key in secondaryDS.keys():
            if self.__db.getDataset(username, secondaryDS[key]) is None:
                return (
                    StatusCode.FATAL,
                    "The secondary data file (%s) does not exist into the database. Should be registry first."
                    % secondaryDS[key])

        #
        # check exec command policy
        #
        if (not '%DATA' in execCommand):
            return (
                StatusCode.FATAL,
                "The exec command must include '%DATA' into the string. This will substitute to the dataFile when start."
            )

        if (not '%IN' in execCommand):
            return (
                StatusCode.FATAL,
                "The exec command must include '%IN' into the string. This will substitute to the configFile when start."
            )

        if not '%OUT' in execCommand:
            return (
                StatusCode.FATAL,
                "The exec command must include '%OUT' into the string. This will substitute to the outputFile when start."
            )

        for key in secondaryDS.keys():
            if not key in execCommand:
                return (StatusCode.FATAL, (
                    "The exec command must include %s into the string. This will substitute to %s when start"
                ) % (key, secondaryDS[key]))

        #
        # Create the output file
        #
        outputFile = volume + '/' + taskname

        if os.path.exists(outputFile):
            MSG_WARNING(self, "The task dir exist into the storage. Beware!")
        else:
            # create the task dir
            MSG_INFO(self, "Creating the task dir in %s", outputFile)
            os.system('mkdir -p %s ' % (outputFile))

        #
        # create the task into the database
        #
        if not dry_run:
            try:
                user = self.__db.getUser(username)

                task = self.__db.createTask(user,
                                            taskname,
                                            configFile,
                                            dataFile,
                                            outputFile,
                                            "",
                                            secondaryDataPath=secondaryDS,
                                            templateExecArgs=execCommand,
                                            queueName=queue)

                task.setSignal(Signal.WAITING)
                task.setStatus(Status.HOLD)

                configFiles = self.__db.getDataset(username,
                                                   configFile).getAllFiles()

                _dataFile = self.__db.getDataset(
                    username, dataFile).getAllFiles()[0].getPath()

                _secondaryDS = {}

                for key in secondaryDS.keys():
                    _secondaryDS[key] = self.__db.getDataset(
                        username, secondaryDS[key]).getAllFiles()[0].getPath()

                offset_job_id = self.__db.generateId(Job)

                for idx, file in progressbar(enumerate(configFiles),
                                             len(configFiles),
                                             prefix='Creating...'):

                    _outputFile = outputFile + '/job_configId_%d' % idx

                    _configFile = file.getPath()

                    command = execCommand
                    command = command.replace('%DATA', _dataFile)
                    command = command.replace('%IN', _configFile)
                    command = command.replace('%OUT', _outputFile)

                    for key in _secondaryDS:
                        command = command.replace(key, _secondaryDS[key])

                    job = self.__db.createJob(task,
                                              _configFile,
                                              idx,
                                              execArgs=command,
                                              priority=-1,
                                              id=offset_job_id + idx)
                    job.setStatus('assigned' if bypass else 'registered')

                task.setStatus('registered')
                self.__db.commit()
            except Exception as e:
                MSG_ERROR(self, e)
                return (StatusCode.FATAL, "Unknown error.")

        return (StatusCode.SUCCESS, "Succefully created.")
コード例 #6
0
    if type(group) is tuple:
        for t in group:
            triggerList.append(t)
    else:
        triggerList.append(group)

### Making all paths
entries = len(triggerList)
step = int(entries / 100) if int(entries / 100) > 0 else 1
paths_test = []
paths_ref = []
keys = []

for trigItem in progressbar(triggerList,
                            entries,
                            step=step,
                            prefix='Making paths...',
                            logger=mainLogger):
    #mainLogger.info(trigItem)
    isL1 = True if trigItem.startswith('L1_') else False
    these_level_names = ['L1Calo'] if isL1 else level_names
    ### Retrieve all paths
    for level in these_level_names:
        for histname in plot_names:

            if not isL1 and 'et' == histname and is_high_et(trigItem):
                histname = 'highet'
            histpath = 'HLT/Egamma/Expert/{TRIGGER}/{CORE}/{LEVEL}/{HIST}'

            # Ref
            if args.reference:
コード例 #7
0
    def __call__(self, sgnFileList, bkgFileList, ofile, dump_csv=False):

        # get all keys
        paths = expandFolders(sgnFileList)
        jobIDs = sorted(
            list(
                set([
                    self._pat.match(f).group('binID') for f in paths
                    if self._pat.match(f) is not None
                ])))
        npatterns = {}
        etBins = None
        etaBins = None

        debug = False

        for id in jobIDs:

            sgnSubFileList = []
            for f in expandFolders(sgnFileList):
                if id in f: sgnSubFileList.append(f)

            if debug:
                sgnSubFileList = sgnSubFileList[0:11]

            reader = ReaderPool(sgnSubFileList,
                                DataReader(self._skip_these_keys),
                                self._nFilesPerJob, self._nthreads)
            MSG_INFO(self, "Reading signal files...")
            outputs = reader()
            sgnDict = outputs.pop()
            if len(outputs) > 0:
                for from_dict in progressbar(outputs,
                                             len(outputs),
                                             'Mearging signal files: ',
                                             60,
                                             logger=self._logger):
                    DataReader.merge(from_dict, sgnDict, self._skip_these_keys)

            bkgSubFileList = []
            for f in expandFolders(bkgFileList):
                if id in f: bkgSubFileList.append(f)

            if debug:
                bkgSubFileList = bkgSubFileList[0:11]

            reader = ReaderPool(bkgSubFileList,
                                DataReader(self._skip_these_keys),
                                self._nFilesPerJob, self._nthreads)
            MSG_INFO(self, "Reading background files...")
            outputs = reader()
            bkgDict = outputs.pop()
            if len(outputs) > 0:
                for from_dict in progressbar(outputs,
                                             len(outputs),
                                             'Mearging background files: ',
                                             60,
                                             logger=self._logger):
                    DataReader.merge(from_dict, bkgDict, self._skip_these_keys)

            # Loop over regions
            d = {
                "features": sgnDict["features"],
                "etBins": sgnDict["etBins"],
                "etaBins": sgnDict["etaBins"],
                "etBinIdx": sgnDict["etBinIdx"],
                "etaBinIdx": sgnDict["etaBinIdx"],
            }

            #if not etBins:  etBins = sgnDict["etBins"]
            etBins = sgnDict["etBins"]
            #if not etaBins:  etaBins = sgnDict["etaBins"]
            etaBins = sgnDict["etaBins"]

            d['data'] = np.concatenate(
                (sgnDict['pattern_' + id],
                 bkgDict['pattern_' + id])).astype('float32')
            d['target'] = np.concatenate(
                (np.ones((sgnDict['pattern_' + id].shape[0], )),
                 np.zeros(
                     (bkgDict['pattern_' + id].shape[0], )))).astype('int16')

            if sgnDict['pattern_' + id] is not None:
                MSG_INFO(self, 'sgnData_%s : (%d, %d)', id,
                         sgnDict['pattern_' + id].shape[0],
                         sgnDict['pattern_' + id].shape[1])
            else:
                MSG_INFO(self, 'sgnData_%s : empty', id)
            if bkgDict['pattern_' + id] is not None:
                MSG_INFO(self, 'bkgData_%s : (%d, %d)', id,
                         bkgDict['pattern_' + id].shape[0],
                         bkgDict['pattern_' + id].shape[1])
            else:
                MSG_INFO(self, 'bkgData_%s : empty', id)
            MSG_INFO(self, "Saving: %s", ofile + '_' + id)

            npatterns['sgnPattern_' + id] = int(sgnDict['pattern_' +
                                                        id].shape[0])
            npatterns['bkgPattern_' + id] = int(bkgDict['pattern_' +
                                                        id].shape[0])
            save(d, ofile + '_' + id, protocol='savez_compressed')

            if dump_csv:
                # Save as csv for pandas
                dd = {}
                for ikey, key in enumerate(d['features']):
                    dd[key] = d['data'][:, ikey]
                dd['target'] = d['target']
                df = pd.DataFrame(dd)
                df.to_csv(ofile + '_' + id + '.csv')

        self.plotNSamples(npatterns, etBins, etaBins)
コード例 #8
0
ファイル: fit_table.py プロジェクト: Raful-RJ/kolmov
    def fill(self,
             data_paths,
             models,
             reference_values,
             output_dir,
             verbose=False,
             except_these_bins=[]):

        from Gaugi.monet.AtlasStyle import SetAtlasStyle
        SetAtlasStyle()
        # create directory
        localpath = os.getcwd() + '/' + output_dir
        try:
            if not os.path.exists(localpath): os.makedirs(localpath)
        except:
            MSG_WARNING(self, 'The director %s exist.', localpath)

        # make template dataframe
        dataframe = collections.OrderedDict({
            'name': [],
            'et_bin': [],
            'eta_bin': [],
            'reference_signal_passed': [],
            'reference_signal_total': [],
            'reference_signal_eff': [],
            'reference_background_passed': [],
            'reference_background_total': [],
            'reference_background_eff': [],
            'signal_passed': [],
            'signal_total': [],
            'signal_eff': [],
            'background_passed': [],
            'background_total': [],
            'background_eff': [],
            'signal_corrected_passed': [],
            'signal_corrected_total': [],
            'signal_corrected_eff': [],
            'background_corrected_passed': [],
            'background_corrected_total': [],
            'background_corrected_eff': [],
        })

        # reduce verbose
        def add(key, value):
            dataframe[key].append(value)

        # Loop over all et/eta bins
        for et_bin, eta_bin in progressbar(
                product(range(len(self.__etbins) - 1),
                        range(len(self.__etabins) - 1)),
            (len(self.__etbins) - 1) * (len(self.__etabins) - 1),
                prefix="Fitting... "):
            path = data_paths[et_bin][eta_bin]
            data, target, avgmu = self.__generator(path)
            references = reference_values[et_bin][eta_bin]

            model = models[et_bin][eta_bin]
            model['thresholds'] = {}

            # Get the predictions
            outputs = model['model'].predict(data,
                                             batch_size=1024,
                                             verbose=verbose).flatten()

            # Get all limits using the output
            xmin = self.__xmin if self.__xmin else int(
                np.percentile(outputs, self.__xmin_percentage))
            xmax = self.__xmax if self.__xmax else int(
                np.percentile(outputs, self.__xmax_percentage))

            MSG_DEBUG(self, 'Setting xmin to %1.2f and xmax to %1.2f', xmin,
                      xmax)
            xbins = int((xmax - xmin) / self.__x_bin_size)

            # Fill 2D histograms
            from ROOT import TH2F
            import array
            if type(self.__y_bin_size) is float:
                ybins = int((self.__ymax - self.__ymin) / self.__y_bin_size)
                th2_signal = TH2F('th2_signal_et%d_eta%d' % (et_bin, eta_bin),
                                  '', xbins, xmin, xmax, ybins, self.__ymin,
                                  self.__ymax)
                th2_background = TH2F(
                    'th2_background_et%d_eta%d' % (et_bin, eta_bin), '', xbins,
                    xmin, xmax, ybins, self.__ymin, self.__ymax)

            else:
                y_bins_edges = self.__y_bin_size[et_bin][eta_bin]
                th2_signal = TH2F('th2_signal_et%d_eta%d' % (et_bin, eta_bin),
                                  '', xbins, xmin, xmax,
                                  len(y_bins_edges) - 1,
                                  array.array('d', y_bins_edges))
                th2_background = TH2F(
                    'th2_background_et%d_eta%d' % (et_bin, eta_bin), '', xbins,
                    xmin, xmax,
                    len(y_bins_edges) - 1, array.array('d', y_bins_edges))

            # fill hists
            w = array.array('d', np.ones_like(outputs[target == 1]))
            th2_signal.FillN(len(outputs[target == 1]),
                             array.array('d', outputs[target == 1].tolist()),
                             array.array('d', avgmu[target == 1].tolist()), w)

            w = array.array('d', np.ones_like(outputs[target == 0]))
            th2_background.FillN(
                len(outputs[target == 0]),
                array.array('d', outputs[target != 1].tolist()),
                array.array('d', avgmu[target != 1].tolist()), w)

            MSG_DEBUG(self, 'Applying linear correction to et%d_eta%d bin.',
                      et_bin, eta_bin)

            for name, ref in references.items():

                if ref['pd_epsilon'] == 0.0:
                    ref_value = ref['pd']
                else:
                    add_fac = (1 - ref['pd']) * ref['pd_epsilon']
                    ref_value = ref['pd'] + add_fac
                    MSG_INFO(
                        self,
                        'Add %1.2f %% in reference pd -> new reference pd: %1.2f',
                        ref['pd_epsilon'], add_fac)

                false_alarm = 1.0
                while false_alarm > self.__false_alarm_limit:

                    # Get the threshold when we not apply any linear correction
                    threshold, _ = self.find_threshold(
                        th2_signal.ProjectionX(), ref_value)

                    # Get the efficiency without linear adjustment
                    #signal_eff, signal_num, signal_den = self.calculate_num_and_den_from_hist(th2_signal, 0.0, threshold)
                    signal_eff, signal_num, signal_den = self.calculate_num_and_den_from_output(
                        outputs[target == 1], avgmu[target == 1], 0.0,
                        threshold)
                    #background_eff, background_num, background_den = self.calculate_num_and_den_from_hist(th2_background, 0.0, threshold)
                    background_eff, background_num, background_den = self.calculate_num_and_den_from_output(
                        outputs[target != 1], avgmu[target != 1], 0.0,
                        threshold)

                    # Apply the linear adjustment and fix it in case of positive slope
                    slope, offset, x_points, y_points, error_points = self.fit(
                        th2_signal, ref_value)

                    # put inside of the ref array
                    apply_fit = True

                    # case 1: The user select each bin will not be corrected
                    for (this_et_bin, this_eta_bin) in except_these_bins:
                        if et_bin == this_et_bin and eta_bin == this_eta_bin:
                            apply_fit = False
                    # case 2: positive slope
                    if slope > 0:
                        MSG_WARNING(
                            self,
                            "Retrieved positive angular factor of the linear correction, setting to 0!"
                        )
                        apply_fit = False

                    slope = slope if apply_fit else 0
                    offset = offset if apply_fit else threshold

                    # Get the efficiency with linear adjustment
                    #signal_corrected_eff, signal_corrected_num, signal_corrected_den = self.calculate_num_and_den_from_hist(th2_signal, slope, offset)
                    signal_corrected_eff, signal_corrected_num, signal_corrected_den = self.calculate_num_and_den_from_output(outputs[target==1], \
                                                                                                                              avgmu[target==1], slope, offset)
                    #background_corrected_eff, background_corrected_num, background_corrected_den = self.calculate_num_and_den_from_hits(th2_background, slope, offset)
                    background_corrected_eff, background_corrected_num, background_corrected_den = self.calculate_num_and_den_from_output(outputs[target!=1], \
                                                                                                                                          avgmu[target!=1], slope, offset)

                    false_alarm = background_corrected_num / background_corrected_den  # get the passed/total

                    if false_alarm > self.__false_alarm_limit:
                        # Reduce the reference value by hand
                        ref_value -= 0.0025

                MSG_DEBUG(self, 'Reference name: %s, target: %1.2f%%', name,
                          ref['pd'] * 100)
                MSG_DEBUG(self, 'Signal with correction is: %1.2f%%',
                          signal_corrected_num / signal_corrected_den * 100)
                MSG_DEBUG(
                    self, 'Background with correction is: %1.2f%%',
                    background_corrected_num / background_corrected_den * 100)

                # decore the model array
                model['thresholds'][name] = {
                    'offset': offset,
                    'slope': slope,
                    'threshold': threshold,
                    'reference_pd': ref['pd'],
                    'reference_fa': ref['fa'],
                }
                paths = []

                # prepate 2D histograms
                info = models[et_bin][eta_bin]['thresholds'][name]
                outname = localpath + '/th2_signal_%s_et%d_eta%d' % (
                    name, et_bin, eta_bin)
                output = self.plot_2d_hist(th2_signal,
                                           slope,
                                           offset,
                                           x_points,
                                           y_points,
                                           error_points,
                                           outname,
                                           xlabel='<#mu>',
                                           etBinIdx=et_bin,
                                           etaBinIdx=eta_bin,
                                           etBins=self.__etbins,
                                           etaBins=self.__etabins,
                                           plot_stage=self.__plot_stage)
                paths.append(output)
                outname = localpath + '/th2_background_%s_et%d_eta%d' % (
                    name, et_bin, eta_bin)
                output = self.plot_2d_hist(th2_background,
                                           slope,
                                           offset,
                                           x_points,
                                           y_points,
                                           error_points,
                                           outname,
                                           xlabel='<#mu>',
                                           etBinIdx=et_bin,
                                           etaBinIdx=eta_bin,
                                           etBins=self.__etbins,
                                           etaBins=self.__etabins,
                                           plot_stage=self.__plot_stage)
                paths.append(output)

                model['thresholds'][name]['figures'] = paths

                # et/eta bin information
                add('name', name)
                add('et_bin', et_bin)
                add('eta_bin', eta_bin)
                # reference values
                add('reference_signal_passed', int(ref['pd'] * signal_den))
                add('reference_signal_total', signal_den)
                add('reference_signal_eff', ref['pd'])
                add('reference_background_passed',
                    int(ref['fa'] * background_den))
                add('reference_background_total', background_den)
                add('reference_background_eff', ref['fa'])
                # non-corrected values
                add('signal_passed', signal_num)
                add('signal_total', signal_den)
                add('signal_eff', signal_num / signal_den)
                add('background_passed', background_num)
                add('background_total', background_den)
                add('background_eff', background_num / background_den)
                # corrected values
                add('signal_corrected_passed', signal_corrected_num)
                add('signal_corrected_total', signal_corrected_den)
                add('signal_corrected_eff',
                    signal_corrected_num / signal_corrected_den)
                add('background_corrected_passed', background_corrected_num)
                add('background_corrected_total', background_corrected_den)
                add('background_corrected_eff',
                    background_corrected_num / background_corrected_den)

        # convert to pandas dataframe
        self.__table = pandas.DataFrame(dataframe)
コード例 #9
0
    def plot(self, dirnames, pdfoutputs, pdftitles, runLabel='', doPDF=True):

        SetAtlasStyle()
        beamer_plots = {}
        global tobject_collector

        basepath = self.getProperty("Basepath")
        etBins = self.getProperty("EtBinningValues")
        etaBins = self.getProperty("EtaBinningValues")

        for idx, feat in enumerate(self.__selectionFeatures):

            dirname = os.getcwd() + '/' + dirnames[idx]
            mkdir_p(dirname)
            # hold selection name
            selection_name = feat.name_a() + '_Vs_' + feat.name_b()
            # For beamer...
            if not selection_name in beamer_plots.keys():
                beamer_plots[selection_name] = {}
                beamer_plots[selection_name]['integrated'] = {}

            ### Plot binning plots
            if (len(etBins) * len(etaBins)) > 1:
                for etBinIdx, etaBinIdx in progressbar(
                        product(range(len(etBins) - 1),
                                range(len(etaBins) - 1)),
                    (len(etBins) - 1) * (len(etaBins) - 1),
                        prefix="Plotting... ",
                        logger=self._logger):
                    # hold binning name
                    binning_name = ('et%d_eta%d') % (etBinIdx, etaBinIdx)
                    # for beamer...
                    if not binning_name in beamer_plots[selection_name].keys():
                        beamer_plots[selection_name][binning_name] = {}

                    ### loop over standard quantities
                    for key in standardQuantitiesNBins.keys():
                        outname = dirname + '/' + selection_name.replace(
                            '_Vs_', '_') + '_' + key + '_' + binning_name
                        out = PlotQuantities(basepath + '/' + selection_name +
                                             '/' + binning_name,
                                             key,
                                             outname,
                                             etidx=etBinIdx,
                                             etaidx=etaBinIdx,
                                             xlabel=electronQuantities[key],
                                             divide='b',
                                             runLabel=runLabel)
                        beamer_plots[selection_name][binning_name][key] = out
                        #del tobject_collector[:]

                    ### loop over info quantities
                    for key in basicInfoQuantities.keys():
                        outname = dirname + '/' + selection_name.replace(
                            '_Vs_', '_') + '_' + key + '_' + binning_name
                        out = PlotQuantities(basepath + '/' + selection_name +
                                             '/' + binning_name,
                                             key,
                                             outname,
                                             etidx=etBinIdx,
                                             etaidx=etaBinIdx,
                                             xlabel=basicInfoQuantities[key],
                                             divide='b',
                                             runLabel=runLabel)
                        beamer_plots[selection_name][binning_name][key] = out
                        #del tobject_collector[:]


                    beamer_plots[selection_name][binning_name]['statistics'] = GetStatistics(basepath+'/'+selection_name+'/'+binning_name, \
                                                                                                  'avgmu',etidx=etBinIdx,etaidx=etaBinIdx)

            #### Plot integrated histograms
            ### loop over standard quantities
            for key in standardQuantitiesNBins.keys():
                outname = dirname + '/' + selection_name.replace(
                    '_Vs_', '_') + '_' + key
                out = PlotQuantities(basepath + '/' + selection_name,
                                     key,
                                     outname,
                                     xlabel=electronQuantities[key],
                                     divide='b',
                                     runLabel=runLabel,
                                     addbinlines=True)
                beamer_plots[selection_name]['integrated'][key] = out
                tobject_collector = []
                gc.collect()
            ### loop over info quantities
            for key in basicInfoQuantities.keys():
                outname = dirname + '/' + selection_name.replace(
                    '_Vs_', '_') + '_' + key + '_' + binning_name
                out = PlotQuantities(basepath + '/' + selection_name,
                                     key,
                                     outname,
                                     xlabel=basicInfoQuantities[key],
                                     divide='b',
                                     runLabel=runLabel,
                                     addbinlines=True)
                beamer_plots[selection_name]['integrated'][key] = out
                tobject_collector = []
                gc.collect()

            beamer_plots[selection_name]['integrated'][
                'statistics'] = GetStatistics(basepath + '/' + selection_name,
                                              'avgmu')
コード例 #10
0
    def plot(self,
             dirnames,
             pdfoutputs,
             pdftitles,
             runLabel='',
             doPDF=True,
             legends=None):

        legends = [
            'Both Approved', 'Ringer Rejected', 'Ringer Approved',
            'Both Rejected'
        ] if legends is None else legends

        SetAtlasStyle()
        beamer_plots = {}
        global tobject_collector

        basepath = self.getProperty("Basepath")
        etBins = self.getProperty("EtBinningValues")
        etaBins = self.getProperty("EtaBinningValues")

        sg = self.getStoreGateSvc()

        for idx, feat in enumerate(self.__quadrantFeatures):

            dirname = os.getcwd() + '/' + dirnames[idx]
            mkdir_p(dirname)
            # hold quadrant name
            quadrant_name = feat.name_a() + '_Vs_' + feat.name_b()
            # For beamer...
            if not quadrant_name in beamer_plots.keys():
                beamer_plots[quadrant_name] = {}
                beamer_plots[quadrant_name]['integrated'] = {}

            ### Plot binning plots
            if (len(etBins) * len(etaBins)) > 1:
                for etBinIdx, etaBinIdx in progressbar(
                        product(range(len(etBins) - 1),
                                range(len(etaBins) - 1)),
                    (len(etBins) - 1) * (len(etaBins) - 1),
                        prefix="Plotting... ",
                        logger=self._logger):
                    # hold binning name
                    binning_name = ('et%d_eta%d') % (etBinIdx, etaBinIdx)
                    # for beamer...
                    if not binning_name in beamer_plots[quadrant_name].keys():
                        beamer_plots[quadrant_name][binning_name] = {}

                    ### loop over standard quantities
                    for key in standardQuantitiesNBins.keys():
                        outname = dirname + '/' + quadrant_name.replace(
                            '_Vs_', '_') + '_' + key + '_' + binning_name
                        out = PlotQuantities(sg,
                                             basepath + '/' + quadrant_name +
                                             '/' + binning_name,
                                             key,
                                             outname,
                                             legends,
                                             etBins=etBins,
                                             etaBins=etaBins,
                                             etidx=etBinIdx,
                                             etaidx=etaBinIdx,
                                             xlabel=electronQuantities[key],
                                             divide='b',
                                             runLabel=runLabel)
                        beamer_plots[quadrant_name][binning_name][key] = out
                        #del tobject_collector[:]

                    ### loop over info quantities
                    for key in basicInfoQuantities.keys():
                        outname = dirname + '/' + quadrant_name.replace(
                            '_Vs_', '_') + '_' + key + '_' + binning_name
                        out = PlotQuantities(sg,
                                             basepath + '/' + quadrant_name +
                                             '/' + binning_name,
                                             key,
                                             outname,
                                             legends,
                                             etBins=etBins,
                                             etaBins=etaBins,
                                             etidx=etBinIdx,
                                             etaidx=etaBinIdx,
                                             xlabel=basicInfoQuantities[key],
                                             divide='b',
                                             runLabel=runLabel)
                        beamer_plots[quadrant_name][binning_name][key] = out
                        #del tobject_collector[:]


                    beamer_plots[quadrant_name][binning_name]['statistics'] = GetStatistics(sg, basepath+'/'+quadrant_name+'/'+binning_name, \
                                                                                                  'avgmu',etidx=etBinIdx,etaidx=etaBinIdx,
                                                                                                  etBins=etBins, etaBins=etaBins)

            #### Plot integrated histograms
            ### loop over standard quantities
            for key in standardQuantitiesNBins.keys():
                outname = dirname + '/' + quadrant_name.replace(
                    '_Vs_', '_') + '_' + key
                out = PlotQuantities(sg,
                                     basepath + '/' + quadrant_name,
                                     key,
                                     outname,
                                     legends,
                                     xlabel=electronQuantities[key],
                                     divide='b',
                                     runLabel=runLabel,
                                     addbinlines=True,
                                     etBins=etBins,
                                     etaBins=etaBins)
                beamer_plots[quadrant_name]['integrated'][key] = out
                tobject_collector = []
                gc.collect()
            ### loop over info quantities
            for key in basicInfoQuantities.keys():
                outname = dirname + '/' + quadrant_name.replace(
                    '_Vs_', '_') + '_' + key + '_' + binning_name
                out = PlotQuantities(sg,
                                     basepath + '/' + quadrant_name,
                                     key,
                                     outname,
                                     legends,
                                     xlabel=basicInfoQuantities[key],
                                     divide='b',
                                     runLabel=runLabel,
                                     addbinlines=True,
                                     etBins=etBins,
                                     etaBins=etaBins)
                beamer_plots[quadrant_name]['integrated'][key] = out
                tobject_collector = []
                gc.collect()

            beamer_plots[quadrant_name]['integrated'][
                'statistics'] = GetStatistics(sg,
                                              basepath + '/' + quadrant_name,
                                              'avgmu',
                                              etBins=etBins,
                                              etaBins=etaBins)

        if doPDF:
            ### Make Latex str et/eta labels
            etbins_str = []
            etabins_str = []
            for etBinIdx in range(len(etBins) - 1):
                etbin = (etBins[etBinIdx], etBins[etBinIdx + 1])
                if etbin[1] > 100:
                    etbins_str.append(r'$E_{T}\text{[GeV]} > %d$' % etbin[0])
                else:
                    etbins_str.append(r'$%d < E_{T} \text{[Gev]}<%d$' % etbin)

            for etaBinIdx in range(len(etaBins) - 1):
                etabin = (etaBins[etaBinIdx], etaBins[etaBinIdx + 1])
                etabins_str.append(r'$%.2f<\eta<%.2f$' % etabin)

            for slideIdx, feat in enumerate(self.__quadrantFeatures):

                with BeamerTexReportTemplate1(theme='Berlin',
                                              _toPDF=True,
                                              title=pdftitles[slideIdx],
                                              outputFile=pdfoutputs[slideIdx],
                                              font='structurebold'):

                    # hold quadrant name
                    quadrant_name = feat.name_a() + '_Vs_' + feat.name_b()
                    section_name = feat.name_a() + ' Vs ' + feat.name_b()
                    #with BeamerSection( name = 'x' ):

                    with BeamerSection(name='Integrated Quantities'):
                        # prepare files for basic quantities
                        figures = []
                        for key in ['et', 'eta', 'phi', 'avgmu', 'nvtx']:
                            figures.append(
                                beamer_plots[quadrant_name]['integrated'][key])

                        BeamerMultiFigureSlide(
                            title='Basic Quantities',
                            paths=figures,
                            nDivWidth=3  # x
                            ,
                            nDivHeight=2  # y
                            ,
                            texts=None,
                            fortran=False,
                            usedHeight=0.6,
                            usedWidth=0.9)
                        # prepare files for calo standard quantities
                        figures = []
                        for key in [
                                'eratio', 'rhad', 'reta', 'rphi', 'f1', 'f3',
                                'wtots1', 'weta2'
                        ]:
                            figures.append(
                                beamer_plots[quadrant_name]['integrated'][key])

                        BeamerMultiFigureSlide(
                            title='Standard Calo Quantities',
                            paths=figures,
                            nDivWidth=4  # x
                            ,
                            nDivHeight=2  # y
                            ,
                            texts=None,
                            fortran=False,
                            usedHeight=0.6,
                            usedWidth=0.9)

                        # prepare files for calo standard quantities
                        figures = []
                        for key in [
                                'd0significance', 'trackd0pvunbiased',
                                'deltaPhiRescaled2', 'eProbabilityHT',
                                'TRT_PID', 'deltaEta1', 'DeltaPOverP'
                        ]:
                            figures.append(
                                beamer_plots[quadrant_name]['integrated'][key])

                        BeamerMultiFigureSlide(
                            title='Standard Track Quantities',
                            paths=figures,
                            nDivWidth=4  # x
                            ,
                            nDivHeight=2  # y
                            ,
                            texts=None,
                            fortran=False,
                            usedHeight=0.6,
                            usedWidth=0.9)

                    section = ['Basic Quantity'] * 2
                    section.extend(['Standard Calo Quantity'] * 8)
                    section.extend(['Standard Track Quantity'] * 7)
                    section.extend([
                        'Likelihood Discriminant', 'Ringer Neural Discriminant'
                    ])
                    for idx, key in enumerate([
                            'avgmu',
                            'nvtx',
                            'eratio',
                            'rhad',
                            'reta',
                            'rphi',
                            'f1',
                            'f3',
                            'wtots1',
                            'weta2',
                            'd0significance',
                            'trackd0pvunbiased',
                            'deltaPhiRescaled2',
                            'eProbabilityHT',
                            'TRT_PID',
                            'deltaEta1',
                            'DeltaPOverP',
                            #'lhOutput','nnOutput'
                    ]):
                        with BeamerSection(name=key.replace('_', '\_')):

                            figures = []
                            binning_name_list = []
                            for etBinIdx, etaBinIdx in product(
                                    range(len(etBins) - 1),
                                    range(len(etaBins) - 1)):
                                binning_name_list.append(
                                    ('et%d_eta%d') % (etBinIdx, etaBinIdx))

                            while len(binning_name_list) > 0:
                                figures = []
                                if len(binning_name_list) > 9:
                                    for _ in range(9):
                                        binning_name = binning_name_list.pop(0)
                                        figures.append(
                                            beamer_plots[quadrant_name]
                                            [binning_name][key])
                                else:
                                    for _ in range(len(binning_name_list)):
                                        binning_name = binning_name_list.pop(0)
                                        figures.append(
                                            beamer_plots[quadrant_name]
                                            [binning_name][key])
                                BeamerMultiFigureSlide(
                                    title=section[idx] + ' (' +
                                    key.replace('_', '\_') + ')',
                                    paths=figures,
                                    nDivWidth=4  # x
                                    ,
                                    nDivHeight=3  # y
                                    ,
                                    texts=None,
                                    fortran=False,
                                    usedHeight=0.7,
                                    usedWidth=0.8)

                    with BeamerSection(name='Statistics'):

                        ### Prepare tables
                        lines1 = []
                        lines1 += [HLine(_contextManaged=False)]
                        lines1 += [HLine(_contextManaged=False)]

                        #lines1 += [ TableLine( columns = ['kinematic region'] + reduce(lambda x,y: x+y,[ [r'\multicol{4}{*}{'+s+'}','','',''] for s in etbins_str]), \
                        lines1 += [ TableLine( columns = ['kinematic region'] + reduce(lambda x,y: x+y,[ [s,'','',''] for s in etbins_str]), \
                                                                                        _contextManaged = False ) ]

                        lines1 += [HLine(_contextManaged=False)]
                        lines1 += [ TableLine( columns = ['Det. Region'] + reduce(lambda x,y: x+y,[[r'$Q_{ij}$',r'$\rho{ij}$',r'$\kappa_{P}$',r'$dis_{ij}$'] \
            #lines1 += [ TableLine( columns = ['Det. Region'] + reduce(lambda x,y: x+y,[['a','b','c','d'] \
                                    for _ in etbins_str]), _contextManaged = False ) ]
                        lines1 += [HLine(_contextManaged=False)]

                        for etaBinIdx in range(len(etaBins) - 1):
                            str_values = []
                            for etBinIdx in range(len(etBins) - 1):
                                binning_name = ('et%d_eta%d') % (etBinIdx,
                                                                 etaBinIdx)
                                stats = beamer_plots[quadrant_name][
                                    binning_name]['statistics']
                                str_values += [
                                    '%1.2f' % stats['Qij'],
                                    '%1.2f' % stats['Pij'],
                                    '%1.2f' % stats['Kp'],
                                    '%1.2f' % stats['dis_ij']
                                ]
                            lines1 += [
                                TableLine(columns=[etabins_str[etaBinIdx]] +
                                          str_values,
                                          _contextManaged=False)
                            ]
                            lines1 += [HLine(_contextManaged=False)]

                        lines1 += [HLine(_contextManaged=False)]

                        with BeamerSlide(title="The General Statistics"):
                            with Table(
                                    caption='The statistics pair wise values.'
                            ) as table:
                                with ResizeBox(size=0.9) as rb:
                                    with Tabular(columns='|l|' + 'cccc|' *
                                                 len(etbins_str)) as tabular:
                                        tabular = tabular
                                        for line in lines1:
                                            if isinstance(line, TableLine):
                                                tabular += line
                                            else:
                                                TableLine(line, rounding=None)
コード例 #11
0
ファイル: crossval_table.py プロジェクト: ringer-atlas/kolmov
    def fill(self, path, tag):
        '''
        This method will fill the information dictionary and convert then into a pandas DataFrame.

        Arguments.:

        - path: the path to the tuned files;
        - tag: the training tag used;
        '''
        paths = expand_folders(path)
        MSG_INFO(self, "Reading file for %s tag from %s", tag, path)

        # Creating the dataframe
        dataframe = collections.OrderedDict({
            'train_tag': [],
            'et_bin': [],
            'eta_bin': [],
            'model_idx': [],
            'sort': [],
            'init': [],
            'file_name': [],
            'tuned_idx': [],
            'op_name': [],
        })

        MSG_INFO(self, 'There are %i files for this task...' % (len(paths)))
        MSG_INFO(self, 'Filling the table... ')

        for ituned_file_name in progressbar(paths, 'Reading %s...' % tag):
            #for ituned_file_name in paths:

            try:
                gfile = load(ituned_file_name)
            except:
                #MSG_WARNING(self, "File %s not open. skip.", ituned_file_name)
                continue
            tuned_file = gfile['tunedData']

            for idx, ituned in enumerate(tuned_file):

                history = ituned['history']

                for op, config_dict in self.__config_dict.items():

                    # get the basic from model
                    dataframe['train_tag'].append(tag)
                    dataframe['model_idx'].append(ituned['imodel'])
                    dataframe['sort'].append(ituned['sort'])
                    dataframe['init'].append(ituned['init'])
                    dataframe['et_bin'].append(
                        self.get_etbin(ituned_file_name))
                    dataframe['eta_bin'].append(
                        self.get_etabin(ituned_file_name))
                    dataframe['file_name'].append(ituned_file_name)
                    dataframe['tuned_idx'].append(idx)
                    dataframe['op_name'].append(op)

                    # Get the value for each wanted key passed by the user in the contructor args.
                    for key, local in config_dict.items():
                        if not key in dataframe.keys():
                            dataframe[key] = [self.__get_value(history, local)]
                        else:
                            dataframe[key].append(
                                self.__get_value(history, local))

        # append tables if is need
        # ignoring index to avoid duplicated entries in dataframe
        self.__table = self.__table.append(
            pd.DataFrame(dataframe), ignore_index=True
        ) if not self.__table is None else pd.DataFrame(dataframe)
        MSG_INFO(self, 'End of fill step, a pandas DataFrame was created...')
コード例 #12
0
ファイル: correction_table.py プロジェクト: meinrads/saphyra
    def fill( self, data_paths,  models, reference_values, verbose=False ):


        # make template dataframe
        dataframe = collections.OrderedDict({
                      'name':[],
                      'et_bin':[],
                      'eta_bin':[],
                      'reference_signal_passed':[],
                      'reference_signal_total':[],
                      'reference_signal_eff':[],
                      'reference_background_passed':[],
                      'reference_background_total':[],
                      'reference_background_eff':[],
                      'signal_passed':[],
                      'signal_total':[],
                      'signal_eff':[],
                      'background_passed':[],
                      'background_total':[],
                      'background_eff':[],
                      'signal_corrected_passed':[],
                      'signal_corrected_total':[],
                      'signal_corrected_eff':[],
                      'background_corrected_passed':[],
                      'background_corrected_total':[],
                      'background_corrected_eff':[],
                     })

        # reduce verbose
        def add(key,value):
          dataframe[key].append(value)


        # Loop over all et/eta bins
        for et_bin, eta_bin in progressbar(product(range(len(self.__etbins)-1),range(len(self.__etabins)-1)),
                                           (len(self.__etbins)-1)*(len(self.__etabins)-1), prefix = "Fitting... " ):
            path = data_paths[et_bin][eta_bin]
            data, target, avgmu = self.__generator(path)
            references = reference_values[et_bin][eta_bin]

            model = models[et_bin][eta_bin]
            model['thresholds'] = {}

            # Get the predictions
            outputs = model['model'].predict(data, batch_size=1024, verbose=verbose).flatten()

            # Get all limits using the output
            xmin = int(np.percentile(outputs , self.__xmin_percentage))
            xmax = int(np.percentile(outputs, self.__xmax_percentage))

            MSG_DEBUG(self, 'Setting xmin to %1.2f and xmax to %1.2f', xmin, xmax)
            xbins = int((xmax-xmin)/self.__x_bin_size)
            ybins = int((self.__ymax-self.__ymin)/self.__y_bin_size)

            # Fill 2D histograms
            from ROOT import TH2F
            import array
            th2_signal = TH2F( 'th2_signal_et%d_eta%d'%(et_bin,eta_bin), '', xbins, xmin, xmax, ybins, self.__ymin, self.__ymax )
            w = array.array( 'd', np.ones_like( outputs[target==1] ) )
            th2_signal.FillN( len(outputs[target==1]), array.array('d',  outputs[target==1].tolist()),  array.array('d',avgmu[target==1].tolist()), w)
            th2_background = TH2F( 'th2_background_et%d_eta%d'%(et_bin,eta_bin), '', xbins,xmin, xmax, ybins, self.__ymin, self.__ymax )
            w = array.array( 'd', np.ones_like( outputs[target==0] ) )
            th2_background.FillN( len(outputs[target==0]), array.array('d',outputs[target!=1].tolist()), array.array('d',avgmu[target!=1].tolist()), w)

            MSG_DEBUG( self, 'Applying linear correction to et%d_eta%d bin.', et_bin, eta_bin)

            for name, ref in references.items():

                false_alarm = 1.0
                while false_alarm > self.__false_alarm_limit:

                    # Get the threshold when we not apply any linear correction
                    threshold, _ = self.find_threshold( th2_signal.ProjectionX(), ref['pd'] )

                    # Get the efficiency without linear adjustment
                    #signal_eff, signal_num, signal_den = self.calculate_num_and_den_from_hist(th2_signal, 0.0, threshold)
                    signal_eff, signal_num, signal_den = self.calculate_num_and_den_from_output(outputs[target==1], avgmu[target==1], 0.0, threshold)
                    #background_eff, background_num, background_den = self.calculate_num_and_den_from_hist(th2_background, 0.0, threshold)
                    background_eff, background_num, background_den = self.calculate_num_and_den_from_output(outputs[target!=1], avgmu[target!=1], 0.0, threshold)

                    # Apply the linear adjustment and fix it in case of positive slope
                    slope, offset, x_points, y_points, error_points = self.fit( th2_signal, ref['pd'] )
                    slope = 0 if slope>0 else slope
                    offset = threshold if slope>0 else offset
                    if slope>0:
                      MSG_WARNING(self, "Retrieved positive angular factor of the linear correction, setting to 0!")

                    # Get the efficiency with linear adjustment
                    #signal_corrected_eff, signal_corrected_num, signal_corrected_den = self.calculate_num_and_den_from_hist(th2_signal, slope, offset)
                    signal_corrected_eff, signal_corrected_num, signal_corrected_den = self.calculate_num_and_den_from_output(outputs[target==1], \
                                                                                                                              avgmu[target==1], slope, offset)
                    #background_corrected_eff, background_corrected_num, background_corrected_den = self.calculate_num_and_den_from_hits(th2_background, slope, offset)
                    background_corrected_eff, background_corrected_num, background_corrected_den = self.calculate_num_and_den_from_output(outputs[target!=1], \
                                                                                                                                          avgmu[target!=1], slope, offset)

                    false_alarm = background_corrected_num/background_corrected_den # get the passed/total

                    if false_alarm > self.__false_alarm_limit:
                        # Reduce the reference value by hand
                        value-=0.0025

                MSG_DEBUG( self, 'Reference name: %s, target: %1.2f%%', name, ref['pd']*100 )
                MSG_DEBUG( self, 'Signal with correction is: %1.2f%%', signal_corrected_num/signal_corrected_den * 100 )
                MSG_DEBUG( self, 'Background with correction is: %1.2f%%', background_corrected_num/background_corrected_den * 100 )

                # decore the model array
                model['thresholds'][name] = {'offset':offset, 'slope':slope, 'threshold' : threshold, 'th2_signal':th2_signal, 'th2_background':th2_background,
																						 'x_points':x_points, 'y_points':y_points, 'error_points':error_points, 'reference_pd': ref['pd'], 'reference_fa':ref['fa']}

                # et/eta bin information
                add( 'name'                        , name )
                add( 'et_bin'                      , et_bin  )
                add( 'eta_bin'                     , eta_bin )
                # reference values
                add( 'reference_signal_passed'     , int(ref['pd']*signal_den) )
                add( 'reference_signal_total'      , signal_den )
                add( 'reference_signal_eff'        , ref['pd'] )
                add( 'reference_background_passed' , int(ref['fa']*background_den) )
                add( 'reference_background_total'  , background_den )
                add( 'reference_background_eff'    , ref['fa'] )
                # non-corrected values
                add( 'signal_passed'               , signal_num )
                add( 'signal_total'                , signal_den )
                add( 'signal_eff'                  , signal_num/signal_den )
                add( 'background_passed'           , background_num )
                add( 'background_total'            , background_den )
                add( 'background_eff'              , background_num/background_den )
                # corrected values
                add( 'signal_corrected_passed'     , signal_corrected_num )
                add( 'signal_corrected_total'      , signal_corrected_den )
                add( 'signal_corrected_eff'        , signal_corrected_num/signal_corrected_den )
                add( 'background_corrected_passed' , background_corrected_num )
                add( 'background_corrected_total'  , background_corrected_den )
                add( 'background_corrected_eff'    , background_corrected_num/background_corrected_den )

        # convert to pandas dataframe
        self.__table = pandas.DataFrame( dataframe )
コード例 #13
0
mainLogger.info('Get histograms from files....')
objects = []; summary = []
for idx, files_ref in enumerate(files):
  paths_ref, keys =  GetHistogramRootPaths( triggerList, removeInnefBefore=args.removeInnefBefore, is_emulation=is_emulated_trigger[idx], logger=mainLogger )
  objects.append( GetHistogramFromMany(files_ref, paths_ref, keys, prefix='Getting reference...', logger=mainLogger) )
  s={}
  for trigger in triggerList:
    s[trigger]={'L1Calo':0.0, 'L2Calo':0.0, 'L2':0.0, 'EFCalo':0.0, 'HLT':0.0}
  summary.append( s )

### Plotting
entries=len(triggerList)
step = int(entries/100) if int(entries/100) > 0 else 1

from EfficiencyTools.drawers import PlotProfiles
for trigItem in progressbar(triggerList, entries, step=step,logger=mainLogger, prefix='Plotting...'):

  isL1 = True if trigItem.startswith('L1_') else False
  these_level_names = ['L1Calo'] if isL1 else level_names
  ### Plot all profiles here!
  for idx, histname in enumerate(plot_names):
    # resize <mu> range
    resize = [12,20,80] if 'mu' in histname else None
    #doFitting = True if 'mu' in histname and args.doNonLinearityTest else False
    for level in these_level_names:
      #try:
      outname = localpath+'/'+dirpath+'/'+level+'_'+trigItem.replace('HLT_','')+'_'+histname+'.pdf'
      legends = []; curves  = []
      # loop over each turn-on inside of the plot
      for jdx, objects_ref in enumerate(objects):
        summary[jdx][trigItem][level]=(objects_ref[trigItem+'_'+level+'_match_'+histname].GetEntries()/
コード例 #14
0
ファイル: utils.py プロジェクト: ringer-atlas/prometheus
def GetHistogramFromMany(basepath,
                         paths,
                         keys,
                         prefix='Loading...',
                         logger=None):

    from Gaugi import progressbar, expandFolders
    from copy import deepcopy

    # internal open function
    def Open(path):
        from ROOT import TFile
        f = TFile(path, 'read')
        if len(f.GetListOfKeys()) > 0:
            run_numbers = [key.GetName() for key in f.GetListOfKeys()]
            return f, run_numbers
        else:
            return f, None

    # internal close function
    def Close(f):
        f.Close()
        del f

    # internal retrive histogram
    def GetHistogram(f, run_number, path, logger=None):
        try:
            hist = f.Get(run_number + '/' + path)
            hist.GetEntries()
            return hist

        except:
            return None

    # internal integration
    def SumHists(histList):
        totalHist = None
        for hist in histList:
            if hist is None:
                continue
            if totalHist is None:
                totalHist = deepcopy(hist.Clone())
            else:
                totalHist.Add(hist)
        return totalHist

    files = expandFolders(basepath)
    hists = {}
    for f in progressbar(files, len(files), prefix=prefix, logger=logger):
        try:
            _f, _run_numbers = Open(f)
        except:
            continue
        if _run_numbers is None:
            continue
        for idx, _path in enumerate(paths):
            for _run_number in _run_numbers:
                hist = GetHistogram(_f, _run_number, _path)
                if (hist is not None):
                    if not keys[idx] in hists.keys():
                        hists[keys[idx]] = [deepcopy(hist.Clone())]
                    else:
                        hists[keys[idx]].append(deepcopy(hist.Clone()))
        Close(_f)

    for key in hists.keys():
        hists[key] = SumHists(hists[key])
    #from pprint import pprint
    #pprint(hists)
    return hists