コード例 #1
0
def compute_tendencies_gm(grid, q_tendencies, q, Case, TS, tmp, tri_diag):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    k_1 = grid.first_interior(Zmin())
    dzi = grid.dzi
    α_1 = tmp['α_0'][k_1]
    ae_1 = q['a', i_env][k_1]
    slice_all_c = grid.slice_all(Center())

    q_tendencies['q_tot', i_gm][slice_all_c] += [
        tmp['mf_tend_q_tot'][k] + tmp['prec_src_q_tot', i_gm][k] * TS.Δti
        for k in grid.over_elems(Center())
    ]
    q_tendencies['q_tot',
                 i_gm][k_1] += Case.Sur.rho_q_tot_flux * dzi * α_1 / ae_1

    q_tendencies['θ_liq', i_gm][slice_all_c] += [
        tmp['mf_tend_θ_liq'][k] + tmp['prec_src_θ_liq', i_gm][k] * TS.Δti
        for k in grid.over_elems(Center())
    ]
    q_tendencies['θ_liq',
                 i_gm][k_1] += Case.Sur.rho_θ_liq_flux * dzi * α_1 / ae_1

    q_tendencies['U', i_gm][k_1] += Case.Sur.rho_uflux * dzi * α_1 / ae_1
    q_tendencies['V', i_gm][k_1] += Case.Sur.rho_vflux * dzi * α_1 / ae_1
    return
コード例 #2
0
    def plot_state(self,
                   grid,
                   directory,
                   filename,
                   name_idx=None,
                   i_sd=0,
                   include_ghost=True):
        domain_range = grid.over_elems(
            Center()) if include_ghost else grid.over_elems_real(Center())

        x = [grid.z_half[k] for k in domain_range]
        if name_idx == None:
            r = 0
            for name_idx in self.var_names:
                y = [self[name_idx, i_sd][k] for k in domain_range]
                plt.plot(y, x, markershapes[r], label=friendly_name(name_idx))
                plt.hold(True)
                r += 1
            plt.title('state vector vs z')
            plt.xlabel('state vector')
            plt.ylabel('z')
        else:
            x_name = filename
            y = [self[name_idx, i_sd][k] for k in domain_range]
            plt.plot(y, x, markershapes[i_sd])

            plt.title(x_name + ' vs z')
            plt.xlabel(x_name)
            plt.ylabel('z')
        plt.savefig(directory + filename)
        plt.close()
コード例 #3
0
def update_GMV_MF(grid, q, TS, tmp):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    slice_all_c = grid.slice_real(Center())
    domain_c = grid.over_elems_real(Center())

    for i in i_uds:
        tmp['mf_tmp',
            i][slice_all_c] = [((q['w', i].Mid(k) - q['w', i_env].Mid(k)) *
                                tmp['ρ_0'][k] * q['a', i][k])
                               for k in domain_c]

    for k in domain_c:
        tmp['mf_θ_liq'][k] = np.sum([
            tmp['mf_tmp', i][k] * (q['θ_liq', i][k] - q['θ_liq', i_env][k])
            for i in i_uds
        ])
        tmp['mf_q_tot'][k] = np.sum([
            tmp['mf_tmp', i][k] * (q['q_tot', i][k] - q['q_tot', i_env][k])
            for i in i_uds
        ])

    tmp['mf_tend_θ_liq'][slice_all_c] = [
        -tmp['α_0'][k] * grad(tmp['mf_θ_liq'].Cut(k), grid) for k in domain_c
    ]
    tmp['mf_tend_q_tot'][slice_all_c] = [
        -tmp['α_0'][k] * grad(tmp['mf_q_tot'].Cut(k), grid) for k in domain_c
    ]
    return
コード例 #4
0
def compute_inversion(grid, q, option, tmp, Ri_bulk_crit, temp_C):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    maxgrad = 0.0
    theta_rho_bl = temp_C.first_interior(grid)
    for k in grid.over_elems_real(Center()):
        q_tot = q['q_tot', i_gm][k]
        q_vap = q_tot - tmp['q_liq', i_gm][k]
        temp_C[k] = theta_rho_c(tmp['p_0'][k], tmp['T', i_gm][k], q_tot, q_vap)
    if option == 'theta_rho':
        for k in grid.over_elems_real(Center()):
            if temp_C[k] > theta_rho_bl:
                zi = grid.z_half[k]
                break
    elif option == 'thetal_maxgrad':
        for k in grid.over_elems_real(Center()):
            grad_TH = grad(q['θ_liq', i_gm].Dual(k), grid)
            if grad_TH > maxgrad:
                maxgrad = grad_TH
                zi = grid.z[k]
    elif option == 'critical_Ri':
        zi = compute_inversion_height(temp_C, q['U', i_gm], q['V', i_gm], grid,
                                      Ri_bulk_crit)
    else:
        print('INVERSION HEIGHT OPTION NOT RECOGNIZED')
    return zi
コード例 #5
0
 def assign(self, grid, name, value):
     if isinstance(name, tuple):
         for k in grid.over_elems(Center()):
             for v in name:
                 for i in self.over_sub_domains(v):
                     self[v, i][k] = value
     elif isinstance(name, str):
         for k in grid.over_elems(Center()):
             for i in self.over_sub_domains(name):
                 self[name, i][k] = value
コード例 #6
0
ファイル: Forcing.py プロジェクト: charleskawczynski/SCAMPy
    def calculate_radiation(self, tmp):
        """
        see eq. 3 in Stevens et. al. 2005 DYCOMS paper
        """

        # find z_i (level of 8.0 g/kg isoline of q_tot)
        k_1 = grid.first_interior(Zmin())
        z_i = grid.z[k_1]
        for k in grid.over_elems_real(Center()):
            if (q['q_tot', i_gm][k] < 8.0 / 1000):
                idx_zi = k
                # will be used at cell edges
                z_i = grid.z[idx_zi]
                rhoi = tmp['ρ_0'][idx_zi]
                break

        self.f_rad = Full(grid)
        k_2 = grid.boundary(Zmax())
        k_1 = 0
        k_2 = grid.nzg - 1

        # cloud-top cooling
        q_0 = 0.0

        self.f_rad[k_2] = self.F0 * np.exp(-q_0)
        for k in range(k_2 - 1, -1, -1):
            q_0 += self.kappa * tmp['ρ_0'][k] * tmp['q_liq', i_gm][k] * grid.dz
            self.f_rad[k] = self.F0 * np.exp(-q_0)

        # cloud-base warming
        q_1 = 0.0
        self.f_rad[k_1] += self.F1 * np.exp(-q_1)
        for k in range(1, k_2 + 1):
            q_1 += self.kappa * tmp['ρ_0'][k - 1] * tmp['q_liq',
                                                        i_gm][k - 1] * grid.dz
            self.f_rad[k] += self.F1 * np.exp(-q_1)

        # cooling in free troposphere
        for k in range(k_1, k_2):
            if grid.z[k] > z_i:
                cbrt_z = np.cbrt(grid.z[k] - z_i)
                self.f_rad[
                    k] += rhoi * dycoms_cp * self.divergence * self.alpha_z * (
                        np.power(cbrt_z, 4) / 4.0 + z_i * cbrt_z)
        # condition at the top
        cbrt_z = np.cbrt(grid.z[k] + grid.dz - z_i)
        self.f_rad[
            k_2] += rhoi * dycoms_cp * self.divergence * self.alpha_z * (
                np.power(cbrt_z, 4) / 4.0 + z_i * cbrt_z)

        for k in grid.over_elems_real(Center()):
            self.dTdt[k] = -(self.f_rad[k + 1] - self.f_rad[k]
                             ) / grid.dz / tmp['ρ_0'][k] / dycoms_cp

        return
コード例 #7
0
    def export_state(self, grid, directory, filename, ExportType=UseDat()):
        domain = grid.over_elems(Center())
        headers = [
            str(name) if len(self.over_sub_domains(name)) == 1 else str(name) +
            '_' + str(i_sd) for name in self.var_names
            for i_sd in self.over_sub_domains(name)
        ]
        headers = [friendly_name(s) for s in headers]
        n_vars = len(headers)
        n_elem = len(domain)
        data = np.array([
            self[name, k, i_sd] for name in self.var_names
            for i_sd in self.over_sub_domains(name) for k in domain
        ])
        data = data.reshape(n_elem, n_vars)
        z = grid.z[domain]

        # TODO: Clean up using numpy export
        data_all = []
        data_all.append(z)
        data_all.append(data)
        file_name = str(directory + filename + '_vs_z.dat')
        with open(file_name, 'w') as f:
            f.write(', '.join(headers) + '\n')
            for k in domain:
                row = data_all[k]
                f.write('\t'.join(row))
        return
コード例 #8
0
def test():
    grid = Grid(0.0, 1.0, 1000, 2)
    f = Half(grid)
    for i in range(1, 1000):
        for k in grid.over_elems_real(Center()):
            temp = f.Mid(k)
            f[k] += 1.0
コード例 #9
0
    def update(self, grid, q_new, q, q_tendencies, tmp, tmp_O2, UpdVar, Case,
               TS, tri_diag):

        i_gm, i_env, i_uds, i_sd = q.domain_idx()
        self.pre_compute_vars(grid, q, q_tendencies, tmp, tmp_O2, UpdVar, Case,
                              TS, tri_diag)

        assign_new_to_values(grid, q_new, q, tmp)

        self.compute_prognostic_updrafts(grid, q_new, q, q_tendencies, tmp,
                                         UpdVar, Case, TS)

        update_cv_env(grid, q, q_tendencies, tmp, tmp_O2, TS, 'tke', tri_diag,
                      self.tke_diss_coeff)
        update_cv_env(grid, q, q_tendencies, tmp, tmp_O2, TS, 'cv_θ_liq',
                      tri_diag, self.tke_diss_coeff)
        update_cv_env(grid, q, q_tendencies, tmp, tmp_O2, TS, 'cv_q_tot',
                      tri_diag, self.tke_diss_coeff)
        update_cv_env(grid, q, q_tendencies, tmp, tmp_O2, TS, 'cv_θ_liq_q_tot',
                      tri_diag, self.tke_diss_coeff)

        update_sol_gm(grid, q_new, q, q_tendencies, TS, tmp, tri_diag)

        for k in grid.over_elems_real(Center()):
            q['U', i_gm][k] = q_new['U', i_gm][k]
            q['V', i_gm][k] = q_new['V', i_gm][k]
            q['θ_liq', i_gm][k] = q_new['θ_liq', i_gm][k]
            q['q_tot', i_gm][k] = q_new['q_tot', i_gm][k]
            q['q_rai', i_gm][k] = q_new['q_rai', i_gm][k]

        apply_gm_bcs(grid, q)

        return
コード例 #10
0
def compute_entrainment_detrainment(grid, UpdVar, Case, tmp, q, entr_detr_fp,
                                    wstar, tke_ed_coeff, entrainment_factor,
                                    detrainment_factor):
    quadrature_order = 3
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    compute_cloud_base_top_cover(grid, q, tmp, UpdVar)
    n_updrafts = len(i_uds)

    input_st = type('', (), {})()
    input_st.wstar = wstar

    input_st.b_mean = 0
    input_st.dz = grid.dz
    input_st.zbl = compute_zbl_qt_grad(grid, q)
    for i in i_uds:
        input_st.zi = UpdVar[i].cloud_base
        for k in grid.over_elems_real(Center()):
            input_st.quadrature_order = quadrature_order
            input_st.z = grid.z_half[k]
            input_st.ml = tmp['l_mix'][k]
            input_st.b = tmp['B', i][k]
            input_st.w = q['w', i].Mid(k)
            input_st.af = q['a', i][k]
            input_st.tke = q['tke', i_env][k]
            input_st.qt_env = q['q_tot', i_env][k]
            input_st.q_liq_env = tmp['q_liq', i_env][k]
            input_st.θ_liq_env = q['θ_liq', i_env][k]
            input_st.b_env = tmp['B', i_env][k]
            input_st.w_env = q['w', i_env].values[k]
            input_st.θ_liq_up = q['θ_liq', i][k]
            input_st.qt_up = q['q_tot', i][k]
            input_st.q_liq_up = tmp['q_liq', i][k]
            input_st.env_Hvar = q['cv_θ_liq', i_env][k]
            input_st.env_QTvar = q['cv_q_tot', i_env][k]
            input_st.env_HQTcov = q['cv_θ_liq_q_tot', i_env][k]
            input_st.p0 = tmp['p_0'][k]
            input_st.alpha0 = tmp['α_0'][k]
            input_st.tke = q['tke', i_env][k]
            input_st.tke_ed_coeff = tke_ed_coeff
            input_st.L = 20000.0  # need to define the scale of the GCM grid resolution
            input_st.n_up = n_updrafts

            w_cut = q['w', i].DualCut(k)
            w_env_cut = q['w', i_env].DualCut(k)
            a_cut = q['a', i].Cut(k)
            a_env_cut = (1.0 - q['a', i].Cut(k))
            aw_cut = a_cut * w_cut + a_env_cut * w_env_cut

            input_st.dwdz = grad(aw_cut, grid)

            if input_st.zbl - UpdVar[i].cloud_base > 0.0:
                input_st.poisson = np.random.poisson(
                    grid.dz / ((input_st.zbl - UpdVar[i].cloud_base) / 10.0))
            else:
                input_st.poisson = 0.0
            ret = entr_detr_fp(input_st)
            tmp['entr_sc', i][k] = ret.entr_sc * entrainment_factor
            tmp['detr_sc', i][k] = ret.detr_sc * detrainment_factor

    return
コード例 #11
0
 def initialize_vars(self, grid, q, q_tendencies, tmp, tmp_O2, UpdVar, Case,
                     TS, tri_diag):
     i_gm, i_env, i_uds, i_sd = q.domain_idx()
     self.zi = compute_inversion(grid, q, Case.inversion_option, tmp,
                                 self.Ri_bulk_crit, tmp['temp_C'])
     zs = self.zi
     self.wstar = compute_convective_velocity(Case.Sur.bflux, zs)
     ws = self.wstar
     ws3 = ws**3.0
     us3 = Case.Sur.ustar**3.0
     k_1 = grid.first_interior(Zmin())
     cv_θ_liq_1 = q['cv_θ_liq', i_gm][k_1]
     cv_q_tot_1 = q['cv_q_tot', i_gm][k_1]
     cv_θ_liq_q_tot_1 = q['cv_θ_liq_q_tot', i_gm][k_1]
     reset_surface_covariance(grid, q, tmp, Case, ws)
     if ws > 0.0:
         for k in grid.over_elems(Center()):
             z = grid.z_half[k]
             temp = ws * 1.3 * np.cbrt(us3 / ws3 + 0.6 * z / zs) * np.sqrt(
                 np.fmax(1.0 - z / zs, 0.0))
             q['tke', i_gm][k] = temp
             q['cv_θ_liq', i_gm][k] = cv_θ_liq_1 * temp
             q['cv_q_tot', i_gm][k] = cv_q_tot_1 * temp
             q['cv_θ_liq_q_tot', i_gm][k] = cv_θ_liq_q_tot_1 * temp
         reset_surface_covariance(grid, q, tmp, Case, ws)
         compute_mixing_length(grid, q, tmp, Case.Sur.obukhov_length,
                               self.zi, self.wstar)
     self.pre_compute_vars(grid, q, q_tendencies, tmp, tmp_O2, UpdVar, Case,
                           TS, tri_diag)
     return
コード例 #12
0
def update_cv_env(grid, q, q_tendencies, tmp, tmp_O2, TS, cv, tri_diag,
                  tke_diss_coeff):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    construct_tridiag_diffusion_O2(grid, q, tmp, TS, tri_diag, tke_diss_coeff)
    k_1 = grid.first_interior(Zmin())

    slice_all_c = grid.slice_all(Center())
    a_e = q['a', i_env]
    tri_diag.f[slice_all_c] = [
        tmp['ρ_0'][k] * a_e[k] * q[cv, i_env][k] * TS.Δti +
        q_tendencies[cv, i_env][k] for k in grid.over_elems(Center())
    ]
    tri_diag.f[k_1] = tmp['ρ_0'][k_1] * a_e[k_1] * q[
        cv, i_env][k_1] * TS.Δti + q[cv, i_env][k_1]
    solve_tridiag_wrapper(grid, q[cv, i_env], tri_diag)

    return
コード例 #13
0
def compute_cv_env_tendencies(grid, q_tendencies, tmp_O2, cv):
    i_gm, i_env, i_uds, i_sd = q_tendencies.domain_idx()
    k_1 = grid.first_interior(Zmin())
    for k in grid.over_elems_real(Center()):
        q_tendencies[cv, i_env][k] = tmp_O2[cv]['press'][k] + tmp_O2[cv][
            'buoy'][k] + tmp_O2[cv]['shear'][k] + tmp_O2[cv]['entr_gain'][
                k] + tmp_O2[cv]['rain_src'][k]
    q_tendencies[cv, i_env][k_1] = 0.0
    return
コード例 #14
0
def assign_new_to_values(grid, q_new, q, tmp):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    slice_all_c = grid.slice_all(Center())
    slice_all_n = grid.slice_all(Node())
    for i in i_uds:
        q_new['w', i][slice_all_n] = [
            q['w', i][k] for k in grid.over_elems(Node())
        ]
        q_new['q_tot', i][slice_all_c] = [
            q['q_tot', i][k] for k in grid.over_elems(Center())
        ]
        q_new['q_rai', i][slice_all_c] = [
            q['q_rai', i][k] for k in grid.over_elems(Center())
        ]
        q_new['θ_liq', i][slice_all_c] = [
            q['θ_liq', i][k] for k in grid.over_elems(Center())
        ]
    return
コード例 #15
0
def compute_covariance_detr(grid, q, tmp, tmp_O2, cv):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for k in grid.over_elems_real(Center()):
        tmp_O2[cv]['detr_loss'][k] = sum([
            q['a', i][k] * np.fabs(q['w', i].Mid(k)) * tmp['entr_sc', i][k]
            for i in i_uds
        ])
        tmp_O2[cv]['detr_loss'][k] *= tmp['ρ_0'][k] * q[cv, i_env][k]
    return
コード例 #16
0
ファイル: Forcing.py プロジェクト: charleskawczynski/SCAMPy
 def coriolis_force(self, grid, q, q_tendencies):
     i_gm, i_env, i_uds, i_sd = q_tendencies.domain_idx()
     for k in grid.over_elems_real(Center()):
         q_tendencies['U',
                      i_gm][k] -= self.coriolis_param * (self.vg[k] -
                                                         q['V', i_gm][k])
         q_tendencies['V',
                      i_gm][k] += self.coriolis_param * (self.ug[k] -
                                                         q['U', i_gm][k])
     return
コード例 #17
0
def compute_covariance_dissipation(grid, q, tmp, tmp_O2, tke_diss_coeff, cv):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    ae = q['a', i_env]
    for k in grid.over_elems_real(Center()):
        l_mix = np.fmax(tmp['l_mix'][k], 1.0)
        tke_env = np.fmax(q['tke', i_env][k], 0.0)
        tmp_O2[cv]['dissipation'][k] = (tmp['ρ_0'][k] * ae[k] *
                                        q[cv, i_env][k] * pow(tke_env, 0.5) /
                                        l_mix * tke_diss_coeff)
    return
コード例 #18
0
 def free_convection_windspeed(self, grid, q, tmp):
     i_gm, i_env, i_uds, i_sd = tmp.domain_idx()
     theta_rho = Half(grid)
     for k in grid.over_elems(Center()):
         q_vap = q['q_tot', i_gm][k] - tmp['q_liq', i_gm][k]
         theta_rho[k] = theta_rho_c(tmp['p_0'][k], tmp['T', i_gm][k], q['q_tot', i_gm][k], q_vap)
     zi = compute_inversion_height(theta_rho, q['U', i_gm], q['V', i_gm], grid, self.Ri_bulk_crit)
     wstar = compute_convective_velocity(self.bflux, zi) # yair here zi in TRMM should be adjusted
     self.windspeed = np.sqrt(self.windspeed*self.windspeed  + (1.2 *wstar)*(1.2 * wstar) )
     return
コード例 #19
0
def update_updraftvars(grid, q, tmp):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for i in i_uds:
        for k in grid.over_elems(Center()):
            s = tmp['prec_src_q_tot', i][k]
            q['q_tot', i][k] += s
            tmp['q_liq', i][k] += s
            q['q_rai', i][k] -= s
            q['θ_liq', i][k] += tmp['prec_src_θ_liq', i][k]
    return
コード例 #20
0
def buoyancy(grid, q, tmp):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for i in i_uds:
        for k in grid.over_elems_real(Center()):
            if q['a', i][k] > 1e-3:
                q_tot = q['q_tot', i][k]
                q_vap = q_tot - tmp['q_liq', i][k]
                T = tmp['T', i][k]
                α_i = alpha_c(tmp['p_0'][k], T, q_tot, q_vap)
                tmp['B', i][k] = buoyancy_c(tmp['α_0'][k], α_i)
            else:
                tmp['B', i][k] = tmp['B', i_env][k]
    # Subtract grid mean buoyancy
    for k in grid.over_elems_real(Center()):
        tmp['B',
            i_gm][k] = np.sum([q['a', i][k] * tmp['B', i][k] for i in i_sd])
        for i in i_sd:
            tmp['B', i][k] -= tmp['B', i_gm][k]
    return
コード例 #21
0
def compute_sources(grid, q, tmp, max_supersaturation):
    i_gm, i_env, i_uds, i_sd = tmp.domain_idx()
    for i in i_uds:
        for k in grid.over_elems(Center()):
            q_tot = q['q_tot', i][k]
            q_tot = tmp['q_liq', i][k]
            T = tmp['T', i][k]
            p_0 = tmp['p_0'][k]
            tmp_qr = acnv_instant(q_tot, q_tot, max_supersaturation, T, p_0)
            tmp['prec_src_θ_liq',
                i][k] = rain_source_to_thetal(p_0, T, q_tot, q_tot, 0.0,
                                              tmp_qr)
            tmp['prec_src_q_tot', i][k] = -tmp_qr
    for k in grid.over_elems(Center()):
        tmp['prec_src_θ_liq', i_gm][k] = np.sum(
            [tmp['prec_src_θ_liq', i][k] * q['a', i][k] for i in i_sd])
        tmp['prec_src_q_tot', i_gm][k] = np.sum(
            [tmp['prec_src_q_tot', i][k] * q['a', i][k] for i in i_sd])
    return
コード例 #22
0
def assign_values_to_new(grid, q, q_new, tmp):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for k in grid.over_elems(Center()):
        for i in i_uds:
            q['w', i][k] = q_new['w', i][k]
            q['q_tot', i][k] = q_new['q_tot', i][k]
            q['q_rai', i][k] = q_new['q_rai', i][k]
            q['θ_liq', i][k] = q_new['θ_liq', i][k]
            q['a', i][k] = q_new['a', i][k]
        q['a', i_env][k] = 1.0 - np.sum([q_new['a', i][k] for i in i_uds])
    return
コード例 #23
0
def compute_zbl_qt_grad(grid, q):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    # computes inversion height as z with max gradient of q_tot
    zbl_q_tot = 0.0
    q_tot_grad = 0.0
    for k in grid.over_elems_real(Center()):
        q_tot_grad_new = grad(q['q_tot', i_gm].Dual(k), grid)
        if np.fabs(q_tot_grad) > q_tot_grad:
            q_tot_grad = np.fabs(q_tot_grad_new)
            zbl_q_tot = grid.z_half[k]
    return zbl_q_tot
コード例 #24
0
def eos_update_SA_mean(grid, q, in_Env, tmp, max_supersaturation):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for k in grid.over_elems_real(Center()):
        p_0_k = tmp['p_0'][k]
        T, q_liq = eos(p_0_k, q['q_tot', i_env][k], q['θ_liq', i_env][k])
        mph = microphysics(T, q_liq, p_0_k, q['q_tot', i_env][k],
                           max_supersaturation, in_Env)
        update_env(q, tmp, k, mph.T, mph.θ_liq, mph.q_tot, mph.q_liq,
                   mph.q_rai, mph.alpha)
        update_cloud_dry(k, mph.T, mph.θ, mph.q_tot, mph.q_liq, mph.q_vap, tmp)
    return
コード例 #25
0
def compute_covariance_interdomain_src(grid, q, tmp, tmp_O2, ϕ, ψ, cv,
                                       tke_factor, interp_func):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for k in grid.over_elems(Center()):
        tmp_O2[cv]['interdomain'][k] = 0.0
        for i in i_uds:
            Δϕ = interp_func(q[ϕ, i], k) - interp_func(q[ϕ, i_env], k)
            Δψ = interp_func(q[ψ, i], k) - interp_func(q[ψ, i_env], k)
            tmp_O2[cv]['interdomain'][k] += tke_factor * q['a', i][k] * (
                1.0 - q['a', i][k]) * Δϕ * Δψ
    return
コード例 #26
0
def compute_eddy_diffusivities_similarity_Siebesma2007(grid, Case, tmp, zi,
                                                       wstar, prandtl_number):
    ustar = Case.Sur.ustar
    for k in grid.over_elems_real(Center()):
        zzi = grid.z_half[k] / zi
        tmp['K_h'][k] = 0.0
        tmp['K_m'][k] = 0.0
        if zzi <= 1.0 and not (wstar < 1e-6):
            tmp['K_h'][k] = vkb * ((ustar / wstar)**3.0 + 39.0 * vkb * zzi)**(
                1.0 / 3.0) * zzi * (1.0 - zzi) * (1.0 - zzi) * wstar * zi
            tmp['K_m'][k] = tmp['K_h'][k] * prandtl_number
    return
コード例 #27
0
def compute_cv_gm(grid, q, ϕ, ψ, cv, tke_factor, interp_func):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    ae = q['a', i_env]
    for k in grid.over_elems(Center()):
        Δϕ = interp_func(q[ϕ, i_env], k) - interp_func(q[ϕ, i_gm], k)
        Δψ = interp_func(q[ψ, i_env], k) - interp_func(q[ψ, i_gm], k)
        q[cv, i_gm][k] = tke_factor * ae[k] * Δϕ * Δψ + ae[k] * q[cv, i_env][k]
        for i in i_uds:
            Δϕ = interp_func(q[ϕ, i], k) - interp_func(q[ϕ, i_gm], k)
            Δψ = interp_func(q[ψ, i], k) - interp_func(q[ψ, i_gm], k)
            q[cv, i_gm][k] += tke_factor * q['a', i][k] * Δϕ * Δψ
    return
コード例 #28
0
def compute_covariance_entr(grid, q, tmp, tmp_O2, ϕ, ψ, cv, tke_factor,
                            interp_func):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    for k in grid.over_elems_real(Center()):
        tmp_O2[cv]['entr_gain'][k] = 0.0
        for i in i_uds:
            Δϕ = interp_func(q[ϕ, i], k) - interp_func(q[ϕ, i_env], k)
            Δψ = interp_func(q[ψ, i], k) - interp_func(q[ψ, i_env], k)
            tmp_O2[cv]['entr_gain'][k] += tke_factor * q['a', i][k] * np.fabs(
                q['w', i].Mid(k)) * tmp['detr_sc', i][k] * Δϕ * Δψ
        tmp_O2[cv]['entr_gain'][k] *= tmp['ρ_0'][k]
    return
コード例 #29
0
def compute_tke_buoy(grid, q, tmp, tmp_O2, cv):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    ae = q['a', i_env]

    # Note that source terms at the first interior point are not really used because that is where tke boundary condition is
    # enforced (according to MO similarity). Thus here I am being sloppy about lowest grid point
    for k in grid.over_elems_real(Center()):
        q_tot_dry = tmp['q_tot_dry'][k]
        θ_dry = tmp['θ_dry'][k]
        t_cloudy = tmp['t_cloudy'][k]
        q_vap_cloudy = tmp['q_vap_cloudy'][k]
        q_tot_cloudy = tmp['q_tot_cloudy'][k]
        θ_cloudy = tmp['θ_cloudy'][k]
        p_0 = tmp['p_0'][k]

        lh = latent_heat(t_cloudy)
        cpm = cpm_c(q_tot_cloudy)
        grad_θ_liq = grad_neg(q['θ_liq', i_env].Cut(k), grid)
        grad_q_tot = grad_neg(q['q_tot', i_env].Cut(k), grid)

        prefactor = Rd * exner_c(p_0) / p_0

        d_alpha_θ_liq_dry = prefactor * (1.0 + (eps_vi - 1.0) * q_tot_dry)
        d_alpha_q_tot_dry = prefactor * θ_dry * (eps_vi - 1.0)
        CF_env = tmp['CF'][k]

        if CF_env > 0.0:
            d_alpha_θ_liq_cloudy = (
                prefactor *
                (1.0 + eps_vi *
                 (1.0 + lh / Rv / t_cloudy) * q_vap_cloudy - q_tot_cloudy) /
                (1.0 +
                 lh * lh / cpm / Rv / t_cloudy / t_cloudy * q_vap_cloudy))
            d_alpha_q_tot_cloudy = (lh / cpm / t_cloudy * d_alpha_θ_liq_cloudy
                                    - prefactor) * θ_cloudy
        else:
            d_alpha_θ_liq_cloudy = 0.0
            d_alpha_q_tot_cloudy = 0.0

        d_alpha_θ_liq_total = (CF_env * d_alpha_θ_liq_cloudy +
                               (1.0 - CF_env) * d_alpha_θ_liq_dry)
        d_alpha_q_tot_total = (CF_env * d_alpha_q_tot_cloudy +
                               (1.0 - CF_env) * d_alpha_q_tot_dry)

        K_h_k = tmp['K_h'][k]
        term_1 = -K_h_k * grad_θ_liq * d_alpha_θ_liq_total
        term_2 = -K_h_k * grad_q_tot * d_alpha_q_tot_total

        # TODO - check
        tmp_O2[cv]['buoy'][k] = g / tmp['α_0'][k] * ae[k] * tmp['ρ_0'][k] * (
            term_1 + term_2)
    return
コード例 #30
0
def compute_grid_means(grid, q, tmp):
    i_gm, i_env, i_uds, i_sd = q.domain_idx()
    ae = q['a', i_env]
    for k in grid.over_elems_real(Center()):
        tmp['q_liq', i_gm][k] = np.sum(
            [q['a', i][k] * tmp['q_liq', i][k] for i in i_sd])
        q['q_rai',
          i_gm][k] = np.sum([q['a', i][k] * q['q_rai', i][k] for i in i_sd])
        tmp['T',
            i_gm][k] = np.sum([q['a', i][k] * tmp['T', i][k] for i in i_sd])
        tmp['B',
            i_gm][k] = np.sum([q['a', i][k] * tmp['B', i][k] for i in i_sd])
    return