def get_random_topology(num_model, output_file_name): data_dict = implement_topology(num_model) data_dict = fix_dict(data_dict) output_file_name = save_topology_in_csv(output_file_name, data_dict) print("\nCreate file of random topology named: ", output_file_name, " sucessfull!\n") return output_file_name
def main(): file_name = "fixed_model_dict.csv" file_name = "COMPLETE_CIFAR10.csv" data = get_data_from_csv(file_name) data = format_data_without_header(data) print(data) output_file = "bad_model.csv" accuracy_threshold = 0.7 # loss_threshold = 1.0 bad_model = get_bad_topology(data, accuracy_threshold, "accuracy") # bad_model = get_bad_topology(data,loss_threshold,"loss") print(bad_model) bad_model_file = save_topology_in_csv(output_file, bad_model)
def main(): FILE_NAME = "fixed_model_dict.csv" FILE_NAME = "COMPLETE_CIFAR10.csv" data = get_data_from_csv(FILE_NAME) data = format_data_without_header(data) OUTPUT_FILE = "bad_model.csv" accuracy_threshold = 0.7 bad_model = get_bad_topology(data, accuracy_threshold, "accuracy") # loss_threshold = 1.0 # bad_model = get_bad_topology(data,loss_threshold,"loss") bad_model_file = save_topology_in_csv(OUTPUT_FILE, bad_model) print("Create file for bad topology: ", bad_model_file, " successfully!!")
def main(): CURRENT_DIR = os.getcwd() INPUT_FOLDER_NAME = 'CIFAR_DICT' INPUT_PATH = CURRENT_DIR +'/'+INPUT_FOLDER_NAME OUTPUT_FILE_NAME = "COMPLETE_DICT.csv" OUTPUT_FILE_PATH = CURRENT_DIR + '/'+ OUTPUT_FILE_NAME INDEX_ACCURACY = -2 INDEX_LOSS = -1 SORTING_INDEX = INDEX_ACCURACY # SORTING_INDEX = INDEX_LOSS data = combine_file(INPUT_PATH, OUTPUT_FILE_PATH) data = sort_data(data, SORTING_INDEX) result_file_name = save_topology_in_csv(OUTPUT_FILE_PATH,data) print("Combine file from: ",INPUT_PATH, " : and get ", OUTPUT_FILE_NAME, " successfully!")
def get_random_topology(num_model, output_file_name): data_dict = implement_topology(num_model) data_dict = fix_dict(data_dict) output_file_name = save_topology_in_csv(output_file_name, data_dict) return output_file_name