def get_synth_lib(): libSynth = FnLibrary() A = PPSortVar('A') B = PPSortVar('B') C = PPSortVar('C') tr5 = mkRealTensorSort([5]) tb5 = mkBoolTensorSort([5]) ti5 = mkIntTensorSort([5]) ppint = PPInt() repeatEnum = PPEnumSort(10, 10) libSynth.addItems([ PPLibItem('compose', func(func(B, C), func(A, B), func(A, C)), None), PPLibItem('map_l', func(func(A, B), func(lst(A), lst(B))), None), PPLibItem('fold_l', func(func(B, A, B), B, func(lst(A), B)), None), PPLibItem('conv_l', func(func(lst(A), B), func(lst(A), lst(B))), None), PPLibItem('conv_g', func(func(lst(A), B), func(graph(A), graph(B))), None), PPLibItem('map_g', func(func(A, B), func(graph(A), graph(B))), None), PPLibItem('fold_g', func(func(B, A, B), B, func(graph(A), B)), None), PPLibItem('zeros', func(PPDimVar('a'), mkRealTensorSort([1, 'a'])), None), PPLibItem('repeat', func(repeatEnum, func(A, A), func(A, A)), None), PPLibItem( 'regress_speed_mnist', func(mkRealTensorSort([1, 3, 32, 32]), mkRealTensorSort([1, 2])), None), # PPLibItem('nav_mnist', func(mkGraphSort(mkRealTensorSort([1, 3, 32, 32])), # mkGraphSort(mkRealTensorSort([1, 2]))), None), ]) return libSynth
def getLib(): libSynth = FnLibrary() A = PPSortVar('A') B = PPSortVar('B') C = PPSortVar('C') tr5 = mkRealTensorSort([5]) tb5 = mkBoolTensorSort([5]) ti5 = mkIntTensorSort([5]) ppint = PPInt() cnts = PPEnumSort(2, 50) libSynth.addItems([ PPLibItem('map', func(func(A, B), func(lst(A), lst(B))), None), PPLibItem('fold', func(func(B, A, B), B, func(lst(A), B)), None), PPLibItem('conv', func(func(A, lst(A), A), func(lst(A), lst(A))), None), PPLibItem('compose', func(func(B, C), func(A, B), func(A, C)), None), PPLibItem('repeat', func(cnts, func(A, A), func(A, A)), None), PPLibItem('zeros', func(PPDimVar('a'), mkRealTensorSort([1, 'a'])), None), PPLibItem('nn_fun_0', func(tr5, tr5), None), PPLibItem('nn_fun_1', func(tr5, tb5), None), PPLibItem('nn_fun_2', func(tb5, ti5), None), ]) return libSynth
def xtest4(): t123 = mkTensorSort(PPInt(), [1, 2, 3]) t333 = mkTensorSort(PPInt(), [3, 3, 3]) tabc = mkTensorSort(PPInt(), ['a', 'b', 'c']) tabcc = mkTensorSort(PPInt(), ['a', 'b', 'c', 'd']) tabcd = mkTensorSort(PPInt(), ['a', 'b', 'c', 'd']) tddd = mkTensorSort(PPInt(), ['d', 'd', 'd']) libSynth = FnLibrary() libSynth.addItems([ PPLibItem('one', mkFuncSort(tabc, tabcc), None), ]) libSynth.addItems([ PPLibItem('two', mkFuncSort(tabcd, tddd), None), ]) ioExamples = None fnSort = PPFuncSort([t123], t333) interpreter = None solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, ioExamples) solver.setEvaluate(False) solution, score = solver.solve() print(solution) print(score)
def getBaseLibrary(): libSynth = FnLibrary() libSynth.addItems( get_items_from_repo([ 'compose', 'map_l', 'fold_l', 'conv_l', 'conv_g', 'map_g', 'fold_g', 'zeros', 'repeat' ])) return libSynth
def mkDefaultLib(): lib = FnLibrary() lib.addItems( get_items_from_repo([ 'compose', # 'map_l', 'fold_l', 'conv_l', 'conv_g', 'map_g', 'fold_g', 'zeros', 'repeat' ])) return lib
def update_library(self, lib: FnLibrary, task_result_single: TaskResultSingle, taskid): if self.seq_settings.update_library: # Add learned modules to the library top_solution = task_result_single.get_top_solution_details() if top_solution is not None: prog, resDict = top_solution unk_sort_map: Dict[str, PPSort] = ASTUtils.getUnkNameSortMap(prog) lib_items = [ PPLibItem(unk, unk_sort, resDict['new_fns_dict'][unk]) for unk, unk_sort in unk_sort_map.items() ] if lib_items.__len__() > 0: lib.addItems(lib_items) # Save the library. lib.save1(self.getLibLocation(), taskid)
def test3(): t123 = mkTensorSort(PPInt(), [1, 2, 3]) t12 = mkTensorSort(PPInt(), [1, 2]) libSynth = FnLibrary() libSynth.addItems([ PPLibItem('one', mkFuncSort(t123, t12), None), ]) ioExamples = None fnSort = PPFuncSort([t123], t12) interpreter = None solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, ioExamples) solver.setEvaluate(False) solution, score = solver.solve() print(solution) print(score)
def test5(): def mk_recognise_5s(): res = NetCNN("recognise_5s", input_ch=1, output_dim=1, output_activation=F.sigmoid) res.load('../Interpreter/Models/is5_classifier.pth.tar') return res libSynth = FnLibrary() t = PPSortVar('T') t1 = PPSortVar('T1') t2 = PPSortVar('T2') libSynth.addItems([ PPLibItem( 'recognise_5s', mkFuncSort(mkTensorSort(PPReal(), ['a', 1, 28, 28]), mkTensorSort(PPReal(), ['a', 1])), mk_recognise_5s()), PPLibItem( 'map', mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)), pp_map), ]) ioExamples = None img = mkRealTensorSort([1, 1, 28, 28]) imgList = mkListSort(img) isFive = mkRealTensorSort([1, 1]) imgToIsFive = mkFuncSort(img, isFive) isFiveList = mkListSort(isFive) fnSort = mkFuncSort(imgList, isFiveList) interpreter = None """targetProg = lambda inputs: map(lib.recognise_5s, inputs)""" solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, ioExamples, ioExamples) solver.setEvaluate(False) # TODO: use "search" instead of "solve" solution, score = solver.solve() print(solution) print(score)
def test1(): intSort = PPInt() boolSort = PPBool() libSynth = FnLibrary() libSynth.addItems([ PPLibItem('itob', mkFuncSort(intSort, boolSort), None), ]) ioExamples = None fnSort = PPFuncSort([intSort], boolSort) interpreter = None solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, ioExamples) solver.setEvaluate(False) targetProg = PPVar('lib.itobX') count = solver.search(targetProg, 100) assert count == -1
def xtest2(): intSort = PPInt() boolSort = PPBool() libSynth = FnLibrary() libSynth.addItems([ PPLibItem('itob', mkFuncSort(intSort, boolSort), None), ]) ioExamples = None fnSort = PPFuncSort([intSort], boolSort) interpreter = None solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, ioExamples) solver.setEvaluate(False) targetProg = PPLambda(params=[PPVarDecl(name='x1', sort=PPInt())], body=PPFuncApp(fn=PPVar('lib.itob'), args=[PPVar(name='x1')])) count = solver.search(targetProg, 100) assert count >= 0
def test_zeros(): # IO Examples train, val = split_into_train_and_validation(0, 10) train_io_examples = get_batch_count_iseven(digits_to_count=[5], count_up_to=10, batch_size=100, digit_dictionary=train) val_io_examples = get_batch_count_iseven(digits_to_count=[5], count_up_to=10, batch_size=20, digit_dictionary=val) def mk_recognise_5s(): res = NetCNN("recognise_5s", input_ch=1, output_dim=1, output_activation=F.sigmoid) res.load('../Interpreter/Models/is5_classifier.pth.tar') return res # Library libSynth = FnLibrary() t = PPSortVar('T') t1 = PPSortVar('T1') t2 = PPSortVar('T2') libSynth.addItems([ PPLibItem('zeros', mkFuncSort(PPDimVar('a'), mkRealTensorSort([1, 'a'])), pp_map), # PPLibItem('zeros2', mkFuncSort(PPDimVar('a'), PPDimVar('b'), mkRealTensorSort(['a', 'b'])), pp_map), ]) fnSort = mkFuncSort(PPDimConst(2), mkRealTensorSort([2])) interpreter = Interpreter(libSynth) solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, train_io_examples, val_io_examples) solver.setEvaluate(False) solution, score = solver.solve()
if __name__ == '__main__': results_dir = str(sys.argv[1]) # results_dir = "Results_maze_baselines" if not os.path.exists(results_dir): os.makedirs(results_dir) just_testing = False epochs_cnn = 1 # 000 epochs_nav = 10 batch_size = 150 lib = FnLibrary() lib.addItems( get_items_from_repo( ['flatten_2d_list', 'map_g', 'compose', 'repeat', 'conv_g'])) interpreter = Interpreter(lib, epochs=1, batch_size=batch_size) # interpreter.epochs = epochs_cnn # res1 = _train_s2t1(results_dir) # print("res1: {}".format(res1["accuracy"])) interpreter.epochs = epochs_nav res2 = _train_s2t2(results_dir, "s2t1_cnn", "s2t1_mlp") print("res2: {}".format(res2["accuracy"])) interpreter.epochs = epochs_nav res3 = _train_s2t3(results_dir, "s2t2_cnn", "s2t2_mlp", "s2t2_conv_g") print("res3: {}".format(res3["accuracy"]))
def main(): tio, vio = get_io_examples_classify_digits(2000, 200) # Task Name: classify_digits prog = PPTermUnk(name='nn_fun_cs1cd_1', sort=PPFuncSort(args=[PPTensorSort(param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28)])], rtpe=PPTensorSort(param_sort=PPBool(), shape=[PPDimConst(value=1), PPDimConst(value=10)]))) unkSortMap = {'nn_fun_cs1cd_1': PPFuncSort(args=[PPTensorSort(param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28)])], rtpe=PPTensorSort(param_sort=PPBool(), shape=[PPDimConst(value=1), PPDimConst(value=10)]))} lib = FnLibrary() lib.addItems([PPLibItem(name='compose', sort=PPFuncSort( args=[PPFuncSort(args=[PPSortVar(name='B')], rtpe=PPSortVar(name='C')), PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='B'))], rtpe=PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='C'))), obj=None), PPLibItem(name='repeat', sort=PPFuncSort( args=[ PPEnumSort( start=8, end=10), PPFuncSort( args=[ PPSortVar( name='A')], rtpe=PPSortVar( name='A'))], rtpe=PPFuncSort( args=[ PPSortVar( name='A')], rtpe=PPSortVar( name='A'))), obj=None), PPLibItem(name='map_l', sort=PPFuncSort(args=[PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='B'))], rtpe=PPFuncSort(args=[PPListSort(param_sort=PPSortVar(name='A'))], rtpe=PPListSort(param_sort=PPSortVar(name='B')))), obj=None), PPLibItem(name='fold_l', sort=PPFuncSort( args=[PPFuncSort(args=[PPSortVar(name='B'), PPSortVar(name='A')], rtpe=PPSortVar(name='B')), PPSortVar(name='B')], rtpe=PPFuncSort(args=[PPListSort(param_sort=PPSortVar(name='A'))], rtpe=PPSortVar(name='B'))), obj=None), PPLibItem(name='conv_l', sort=PPFuncSort( args=[PPFuncSort(args=[PPListSort(param_sort=PPSortVar(name='A'))], rtpe=PPSortVar(name='B'))], rtpe=PPFuncSort(args=[PPListSort(param_sort=PPSortVar(name='A'))], rtpe=PPListSort(param_sort=PPSortVar(name='B')))), obj=None), PPLibItem(name='zeros', sort=PPFuncSort(args=[PPDimVar(name='a')], rtpe=PPTensorSort(param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimVar(name='a')])), obj=None)]) fn_sort = PPFuncSort(args=[PPTensorSort(param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28)])], rtpe=PPTensorSort(param_sort=PPBool(), shape=[PPDimConst(value=1), PPDimConst(value=10)])) interpreter = Interpreter(lib, 150) res = interpreter.evaluate(program=prog, output_type_s=fn_sort.rtpe, unkSortMap=unkSortMap, io_examples_tr=tio, io_examples_val=vio)
def addImageFunctionsToLibrary(libSynth: FnLibrary, load_recognise_5s=True): real_tensor_2d = mkTensorSort(PPReal(), ['a', 'b']) bool_tensor_2d = mkTensorSort(PPBool(), ['a', 'b']) libSynth.addItems([ PPLibItem('add', mkFuncSort(real_tensor_2d, real_tensor_2d, real_tensor_2d), pp_add), PPLibItem('add1', mkFuncSort(real_tensor_2d, bool_tensor_2d, real_tensor_2d), pp_add), PPLibItem( 'map', mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)), pp_map), PPLibItem( 'map2d', mkFuncSort(mkFuncSort(t1, t2), mkListSort(mkListSort(t1)), mkListSort(mkListSort(t2))), pp_map2d), # question ^ should we transform map's definition into using vectors? is this not enough? # we don't know the type of the tensor output, w/o knowing the function. # PPLibItem('cat', mkFuncSort(mkTensorSort(PPReal(), ['a', 'b']), mkTensorSort(PPReal(), ['a', 'c']), # mkTensorSort(PPReal(), ['a', 'd'])), pp_cat), # TODO: d = b + c # Question: can we write 'b+c'? I'm not sure if it's useful # Also, the input types don't have to be PPReal, but for not it should suffice to just leave it like this? # ^ It can accept a tuple of tensors of different shapes, but maybe we can restrict it to tuple of 2 for now. # PPLibItem('zeros', mkFuncSort(PPInt(), mkTensorSort(PPReal(), ['a', 'b']), mkTensorSort(PPReal(), ['a', 'c'])), pp_get_zeros), # PPLibItem('zeros', mkFuncSort(PPInt(), PPInt(), mkTensorSort(PPReal(), ['a', 'c'])), pp_get_zeros), # 4, [2, 5] -> [2, 4] # 7, [2, 5] -> [2, 7] # Question: How do we say that the ints are the same number, PPInt() == 'c' # Also, The input tensor type doesn't have to be PPReal, can be int or bool as well # Also, the input tensor can be of any type, doesn't need to be float PPLibItem('zeros', mkFuncSort(PPDimVar('a'), mkRealTensorSort([1, 'a'])), pp_get_zeros), PPLibItem('reduce_general', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t, t), pp_reduce), PPLibItem('reduce', mkFuncSort(mkFuncSort(t, t, t), mkListSort(t), t), pp_reduce), # pp_get_zeros # PPLibItem('reduce_with_init_zeros', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t), pp_reduce_w_zeros_init), # Question : the initializer is only optional. How do we encode this information? # The following are just test functions for evaluation, not properly typed. # ,PPLibItem('mult_range09', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t, t), get_multiply_by_range09()) # ,PPLibItem('argmax', mkFuncSort(mkFuncSort(t, t1, t), mkListSort(t1), t, t), argmax) # PPLibItem('split', mkFuncSort(PPImageSort(), mkListSort(PPImageSort())), split), # PPLibItem('join', mkFuncSort(mkListSort(PPImageSort()), PPImageSort()), None), ]) if load_recognise_5s: libSynth.addItems([ PPLibItem( 'recognise_5s', mkFuncSort(mkTensorSort(PPReal(), ['a', 1, 28, 28]), mkTensorSort(PPBool(), ['a', 1])), mk_recognise_5s()) ]) # set the neural libraries to evaluation mode # TODO: need to make sure we're properly switching between eval and train everywhere libSynth.recognise_5s.eval()
def main(): io_train, io_val = get_io_examples_count_digit_occ(5, 1200, 1200) # Task Name: count_digit_occ_5s prog = PPFuncApp( fn=PPVar(name='lib.compose'), args=[ PPTermUnk( name='nn_fun_3254', sort=PPFuncSort(args=[ PPListSort(param_sort=PPListSort(param_sort=PPTensorSort( param_sort=PPBool(), shape=[PPDimConst( value=1), PPDimConst(value=1)]))) ], rtpe=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ]))), PPFuncApp(fn=PPVar(name='lib.conv_l'), args=[ PPFuncApp(fn=PPVar(name='lib.map_l'), args=[PPVar(name='lib.nn_fun_1')]) ]) ]) unkSortMap = { 'nn_fun_3254': PPFuncSort(args=[ PPListSort(param_sort=PPListSort(param_sort=PPTensorSort( param_sort=PPBool(), shape=[PPDimConst( value=1), PPDimConst(value=1)]))) ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1)])) } lib = FnLibrary() lib.addItems([ PPLibItem(name='compose', sort=PPFuncSort(args=[ PPFuncSort(args=[PPSortVar(name='B')], rtpe=PPSortVar(name='C')), PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='B')) ], rtpe=PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='C'))), obj=None), PPLibItem(name='repeat', sort=PPFuncSort(args=[ PPEnumSort(start=2, end=50), PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='A')) ], rtpe=PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='A'))), obj=None), PPLibItem(name='map_l', sort=PPFuncSort( args=[ PPFuncSort(args=[PPSortVar(name='A')], rtpe=PPSortVar(name='B')) ], rtpe=PPFuncSort( args=[PPListSort(param_sort=PPSortVar(name='A'))], rtpe=PPListSort(param_sort=PPSortVar(name='B')))), obj=None), PPLibItem( name='fold_l', sort=PPFuncSort(args=[ PPFuncSort(args=[PPSortVar(name='B'), PPSortVar(name='A')], rtpe=PPSortVar(name='B')), PPSortVar(name='B') ], rtpe=PPFuncSort(args=[ PPListSort(param_sort=PPSortVar(name='A')) ], rtpe=PPSortVar(name='B'))), obj=None), PPLibItem(name='conv_l', sort=PPFuncSort( args=[ PPFuncSort(args=[ PPListSort(param_sort=PPSortVar(name='A')) ], rtpe=PPSortVar(name='B')) ], rtpe=PPFuncSort( args=[PPListSort(param_sort=PPSortVar(name='A'))], rtpe=PPListSort(param_sort=PPSortVar(name='B')))), obj=None), PPLibItem(name='zeros', sort=PPFuncSort(args=[PPDimVar(name='a')], rtpe=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimVar(name='a') ])), obj=None), PPLibItem(name='nn_fun_1', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ]) ], rtpe=PPTensorSort(param_sort=PPBool(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ])), obj=None), PPLibItem(name='nn_fun_2230', sort=PPFuncSort(args=[ PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ]) ], rtpe=PPTensorSort(param_sort=PPBool(), shape=[ PPDimConst(value=1), PPDimConst(value=1) ])), obj=None) ]) fn_sort = PPFuncSort(args=[ PPListSort(param_sort=PPTensorSort(param_sort=PPReal(), shape=[ PPDimConst(value=1), PPDimConst(value=1), PPDimConst(value=28), PPDimConst(value=28) ])) ], rtpe=PPTensorSort( param_sort=PPReal(), shape=[PPDimConst(value=1), PPDimConst(value=1)])) print(ReprUtils.repr_py_ann(prog)) print(ReprUtils.repr_py_sort(lib.items['nn_fun_1'].sort)) NeuralSynthesizer.is_evaluable(prog)
def test6(): t = PPSortVar('T') t1 = PPSortVar('T1') t2 = PPSortVar('T2') def mk_recognise_5s(): res = NetCNN("recognise_5s", input_ch=1, output_dim=1, output_activation=F.sigmoid) res.load('../Interpreter/Models/is5_classifier.pth.tar') return res libSynth = FnLibrary() real_tensor_2d = mkTensorSort(PPReal(), ['a', 'b']) libSynth.addItems([ PPLibItem( 'recognise_5s', mkFuncSort(mkTensorSort(PPReal(), ['a', 1, 28, 28]), mkTensorSort(PPReal(), ['a', 1])), mk_recognise_5s()), PPLibItem( 'map', mkFuncSort(mkFuncSort(t1, t2), mkListSort(t1), mkListSort(t2)), pp_map), PPLibItem('reduce', mkFuncSort(mkFuncSort(t, t, t), mkListSort(t), t), pp_reduce), PPLibItem('add', mkFuncSort(real_tensor_2d, real_tensor_2d, real_tensor_2d), lambda x, y: x + y), ]) train, val = split_into_train_and_validation(0, 10) val_ioExamples = get_batch_count_iseven(digits_to_count=[5], count_up_to=10, batch_size=20, digit_dictionary=val) img = mkRealTensorSort([1, 1, 28, 28]) isFive = mkRealTensorSort([1, 1]) imgToIsFive = mkFuncSort(img, isFive) imgList = mkListSort(img) isFiveList = mkListSort(isFive) sumOfFives = mkRealTensorSort([1, 1]) fnSort = mkFuncSort(imgList, sumOfFives) interpreter = Interpreter(libSynth) """ targetProg = lambda inputs. reduce( add, map(lib.recognise_5s, inputs)) """ # TODO: use "search" instead of "solve" solver = SymbolicSynthesizer(interpreter, libSynth, fnSort, val_ioExamples, val_ioExamples) # solver.setEvaluate(False) solution, score = solver.solve() print(solution) print(score)