コード例 #1
0
def main(basename, input_dir, params, time_limit=sys.maxint):
    for key in params:
        try:
            params[key] = float(params[key])
        except:
            pass

    output_dir = os.getcwd()
    D = store_and_or_load_data(data_dir=input_dir,
                               dataset=basename,
                               outputdir=output_dir)

    if D.info["task"].lower() == "regression":
        cs = AutoSklearnRegressor.get_hyperparameter_search_space()
    else:
        cs = AutoSklearnClassifier.get_hyperparameter_search_space()
    configuration = configuration_space.Configuration(cs, **params)

    global evaluator
    evaluator = models.evaluate.Evaluator(Datamanager=D,
                                          configuration=configuration,
                                          with_predictions=True,
                                          all_scoring_functions=True)
    evaluator.output_dir = output_dir
    evaluator.basename = basename
    evaluator.D = D
    evaluator.fit()

    evaluator.finish_up()
コード例 #2
0
def main(basename, input_dir, params):

    output_dir = os.getcwd()
    D = store_and_or_load_data(data_dir=input_dir, dataset=basename,
                               outputdir=output_dir)

    cs = get_class(D.info).get_hyperparameter_search_space()
    configuration = configuration_space.Configuration(cs, **params)

    global evaluator
    evaluator = autosklearn.models.holdout_evaluator.HoldoutEvaluator(
        Datamanager=D, configuration=configuration, with_predictions=True,
        all_scoring_functions=True, output_dir=output_dir)
    evaluator.fit()
    evaluator.finish_up()
コード例 #3
0
def main(dataset_info, mode, seed, params, mode_args=None):
    """This command line interface has three different operation modes:

    * CV: useful for the Tweakathon
    * 1/3 test split: useful to evaluate a configuration
    * cv on 2/3 train split: useful to optimize hyperparameters in a training
      mode before testing a configuration on the 1/3 test split.

    It must by no means be used for the Auto part of the competition!
    """
    if mode != "test":
        num_run = get_new_run_num()

    for key in params:
        try:
            params[key] = int(params[key])
        except:
            try:
                params[key] = float(params[key])
            except:
                pass

    if seed is not None:
        seed = int(float(seed))
    else:
        seed = 1

    output_dir = os.getcwd()

    D = store_and_or_load_data(dataset_info=dataset_info, outputdir=output_dir)

    cs = get_configuration_space(D.info)
    configuration = configuration_space.Configuration(cs, params)
    metric = D.info['metric']

    global evaluator
    # Train/test split
    if mode == 'holdout':
        evaluator = HoldoutEvaluator(D,
                                     configuration,
                                     with_predictions=True,
                                     all_scoring_functions=True,
                                     output_y_test=True,
                                     seed=seed,
                                     num_run=num_run)
        evaluator.fit()
        signal.signal(15, empty_signal_handler)
        evaluator.finish_up()
        model_directory = os.path.join(os.getcwd(), "models_%d" % seed)
        if os.path.exists(model_directory):
            model_filename = os.path.join(model_directory,
                                          "%s.model" % num_run)
            with open(model_filename, "w") as fh:
                pickle.dump(evaluator.model, fh, -1)

    elif mode == 'test':
        evaluator = TestEvaluator(D,
                                  configuration,
                                  all_scoring_functions=True,
                                  seed=seed)
        evaluator.fit()
        scores = evaluator.predict()
        duration = time.time() - evaluator.starttime

        score = scores[metric]
        additional_run_info = ";".join(
            ["%s: %s" % (m_, value) for m_, value in scores.items()])
        additional_run_info += ";" + "duration: " + str(duration)

        print "Result for ParamILS: %s, %f, 1, %f, %d, %s" % (
            "SAT", abs(duration), score, evaluator.seed, additional_run_info)

    # CV on the whole training set
    elif mode == 'cv':
        evaluator = CVEvaluator(D,
                                configuration,
                                with_predictions=True,
                                all_scoring_functions=True,
                                output_y_test=True,
                                cv_folds=mode_args['folds'],
                                seed=seed,
                                num_run=num_run)
        evaluator.fit()
        signal.signal(15, empty_signal_handler)
        evaluator.finish_up()

    elif mode == 'partial_cv':
        evaluator = CVEvaluator(D,
                                configuration,
                                all_scoring_functions=True,
                                cv_folds=mode_args['folds'],
                                seed=seed,
                                num_run=num_run)
        evaluator.partial_fit(mode_args['fold'])
        scores = evaluator.predict()
        duration = time.time() - evaluator.starttime

        score = scores[metric]
        additional_run_info = ";".join(
            ["%s: %s" % (m_, value) for m_, value in scores.items()])
        additional_run_info += ";" + "duration: " + str(duration)

        print "Result for ParamILS: %s, %f, 1, %f, %d, %s" % (
            "SAT", abs(duration), score, evaluator.seed, additional_run_info)

    elif mode == 'nested-cv':
        evaluator = NestedCVEvaluator(D,
                                      configuration,
                                      with_predictions=True,
                                      inner_cv_folds=mode_args['inner_folds'],
                                      outer_cv_folds=mode_args['outer_folds'],
                                      all_scoring_functions=True,
                                      output_y_test=True,
                                      seed=seed,
                                      num_run=num_run)
        evaluator.fit()
        signal.signal(15, empty_signal_handler)
        evaluator.finish_up()

    else:
        raise ValueError("Must choose a legal mode.")
コード例 #4
0
def main(dataset_info, mode, seed, params, mode_args=None):
    """This command line interface has three different operation modes:

    * CV: useful for the Tweakathon
    * 1/3 test split: useful to evaluate a configuration
    * cv on 2/3 train split: useful to optimize hyperparameters in a training
      mode before testing a configuration on the 1/3 test split.

    It must by no means be used for the Auto part of the competition!
    """
    if mode_args is None:
        mode_args = {}

    output_dir = os.getcwd()

    if not isinstance(dataset_info, AbstractDataManager):
        D = store_and_or_load_data(dataset_info=dataset_info,
                                   outputdir=output_dir)
    else:
        D = dataset_info
    metric = D.info['metric']

    num_run = None
    if mode != 'test':
        num_run = get_new_run_num()

    if params is not None:
        for key in params:
            try:
                params[key] = int(params[key])
            except Exception:
                try:
                    params[key] = float(params[key])
                except Exception:
                    pass

        cs = get_configuration_space(D.info)
        configuration = configuration_space.Configuration(cs, params)
    else:
        configuration = None

    if seed is not None:
        seed = int(float(seed))
    else:
        seed = 1

    global evaluator

    if mode == 'holdout':
        make_mode_holdout(D, seed, configuration, num_run)
    elif mode == 'holdout-iterative-fit':
        make_mode_holdout_iterative_fit(D, seed, configuration, num_run)
    elif mode == 'test':
        make_mode_test(D, seed, configuration, metric)
    elif mode == 'cv':
        make_mode_cv(D, seed, configuration, num_run, mode_args['folds'])
    elif mode == 'partial-cv':
        make_mode_partial_cv(D, seed, configuration, num_run, metric,
                             mode_args['fold'], mode_args['folds'])
    elif mode == 'nested-cv':
        make_mode_nested_cv(D, seed, configuration, num_run,
                            mode_args['inner_folds'], mode_args['outer_folds'])
    else:
        raise ValueError('Must choose a legal mode.')