def opt_fun(par): try: # distribute the parameters SpatialVarFun.Function(par, kub=SpatialVarFun.Kub, klb=SpatialVarFun.Klb) self.Parameters = SpatialVarFun.Par3d #run the model Wrapper.HapiModel(self) # calculate performance of the model try: error = self.OF(self.QGauges, self.qout, self.quz_routed, self.qlz_translated, *[self.GaugesTable]) except TypeError: # if no of inputs less than what the function needs assert False, "the objective function you have entered needs more inputs please enter then in a list as *args" # print error if printError != 0: print(error) print(par) fail = 0 except: error = np.nan fail = 1 return error, [], fail
def RunHapi(self): """ ======================================================================= RunModel(PrecPath, Evap_Path, TempPath, DemPath, FlowAccPath, FlowDPath, ParPath, p2) ======================================================================= this function runs the conceptual distributed hydrological model Inputs: ---------- 1-Paths: 4-FlowAccPath: 5-FlowDPath: [String] path to the Flow Direction raster of the catchment (it should include the raster name and extension) 7-ParPath: [String] path to the Folder contains parameters rasters of the catchment 8-p2: [List] list of unoptimized parameters p2[0] = tfac, 1 for hourly, 0.25 for 15 min time step and 24 for daily time step p2[1] = catchment area in km2 Outputs: ---------- 1-statevariables: [numpy attribute] 4D array (rows,cols,time,states) states are [sp,wc,sm,uz,lv] 2-qlz: [numpy attribute] 3D array of the lower zone discharge 3-quz: [numpy attribute] 3D array of the upper zone discharge 4-qout: [numpy attribute] 1D timeseries of discharge at the outlet of the catchment of unit m3/sec 5-quz_routed: [numpy attribute] 3D array of the upper zone discharge accumulated and routed at each time step 6-qlz_translated: [numpy attribute] 3D array of the lower zone discharge translated at each time step Example: ---------- PrecPath = prec_path="meteodata/4000/calib/prec" Evap_Path = evap_path="meteodata/4000/calib/evap" TempPath = temp_path="meteodata/4000/calib/temp" DemPath = "GIS/4000/dem4000.tif" FlowAccPath = "GIS/4000/acc4000.tif" FlowDPath = "GIS/4000/fd4000.tif" ParPath = "meteodata/4000/parameters" p2=[1, 227.31] st, q_out, q_uz_routed = RunModel(PrecPath,Evap_Path,TempPath,DemPath, FlowAccPath,FlowDPath,ParPath,p2) """ ### input data validation # data type # assert type(self.FlowAcc)==gdal.Dataset, "flow_acc should be read using gdal (gdal dataset please read it using gdal library) " # assert type(self.FlowDir)==gdal.Dataset, "flow_direct should be read using gdal (gdal dataset please read it using gdal library) " # input dimensions [fd_rows, fd_cols] = self.FlowDirArr.shape assert fd_rows == self.rows and fd_cols == self.cols, "all input data should have the same number of rows" # input dimensions assert np.shape(self.Prec)[0] == self.rows and np.shape( self.ET )[0] == self.rows and np.shape(self.Temp)[0] == self.rows and np.shape( self.Parameters )[0] == self.rows, "all input data should have the same number of rows" assert np.shape(self.Prec)[1] == self.cols and np.shape( self.ET )[1] == self.cols and np.shape(self.Temp)[1] == self.cols and np.shape( self.Parameters )[1] == self.cols, "all input data should have the same number of columns" assert np.shape(self.Prec)[2] == np.shape(self.ET)[2] and np.shape( self.Temp )[2], "all meteorological input data should have the same length" #run the model Wrapper.HapiModel(self) print("Model Run has finished")