def run(): print "Loading test County Dataset" # clean up if necessary cat = Category.objects.filter(name='Test') if not cat: # create the test Category cat = Category(name="Test") cat.save() print "Created Category" cat = Category.objects.filter(name='Test') # clean up if necessary dat = Dataset.objects.filter(name='TestCounties') if dat: dat.delete() print "Deleted Dataset" # create a test Dataset dat = Dataset(category=cat[0], name="TestCounties", description="Counties Test Dataset", legend="Empty") dat.save() print "Created Test County Dataset" reg = Region.objects.filter(state='MA') # populate datasets for r in reg: if r.fips != None and len(r.fips) == 5: row = Datarow(dataset=dat, region=r, value=random.randrange(0,100)) row.save() print("%s County rows created" % len(reg))
def run(): print "Loading empty Dataset" # create the empty Category cat = Category(name="Empty") cat.save() # clean up if necessary dat = Dataset.objects.filter(name='Empty') if not dat: # create the empty Dataset dat = Dataset(category=cat, name="Empty", description="Empty Dataset", legend="Empty") dat.save() dat = Dataset.objects.filter(name='Empty') # create empty ranges range = Range(dataset=dat[0], name="Low", low=0, high=10, color="#FFFAFA") range.save() range = Range(dataset=dat[0], name="Low-Mid", low=10, high=20, color="#F2F2F2") range.save() range = Range(dataset=dat[0], name="Mid", low=20, high=30, color="#D0CFCF") range.save() range = Range(dataset=dat[0], name="Mid-High", low=30, high=40, color="#ADACAC") range.save() range = Range(dataset=dat[0], name="High", low=40, high=50, color="#8B8989") range.save() range = Range(dataset=dat[0], name="Very High", low=50, high=60, color="#596C56") range.save() row = Datarow.objects.filter(dataset=dat[0]) if row: row.delete() # use states.xml to iterate through States xmldoc = minidom.parse('HealthMap/scripts/states.xml') cNodes = xmldoc.childNodes sList = cNodes[0].getElementsByTagName("state") # top level in DOM is States for state in sList: # iterate through each State # create the State record in Datarow table with one zero value print ("%s (%s)" % (state.getAttribute('name'), state.getAttribute('abbrev'))) reg = Region.objects.filter(state=state.getAttribute('abbrev')) if len(reg)==1: row = Datarow(dataset=dat[0], region=reg[0], value=0) row.save() print ("... %s values" % len(sList))
def run(): col = [None] * 60 cat = [None] * 60 desc = [None] * 60 source = [None] * 60 col[0] = "FIPS" col[1] = "State" col[2] = "County" col[3] = "Years of Potential Life Lost Rate" cat[3] = "Health" desc[3] = "Age-adjusted years of potential life lost rate per 100,000" source[3] = "National Center for Health Statistics (NCHS) 2006-2008" col[4] = "Fair/Poor Health" cat[4] = "Health" desc[4] = "Percent of adults that report fair or poor health (age-adjusted)" source[4] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[5] = "Physically Unhealthy Days" cat[5] = "Health" desc[5] = "Average number of reported physically unhealthy days per month" source[5] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[6] = "Mentally Unhealthy Days" cat[6] = "Health" desc[6] = "Average number of reported mentally unhealthy days per month" source[6] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[7] = "Low Birth Weight" cat[7] = "Health" desc[7] = "Percent of births with low birth weight (<2,500g)" source[7] = "Vital Statistics, National Center for Health Statistics (NCHS) 2002-2008" col[8] = "Smoking" cat[8] = "Health" desc[8] = "Percent of adults that reported currently smoking" source[8] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[9] = "Obesity" cat[9] = "Health" desc[9] = "Percent of adults that report BMI >= 30" source[9] = "National Center for Chronic Disease Prevention and Health 2009" col[10] = "Physically Inactive" cat[10] = "Health" desc[10] = "Percent of adults that report no leisure time physical activity" source[10] = "National Center for Chronic Disease Prevention and Health 2009" col[11] = "Excessive Drinking" cat[11] = "Health" desc[11] = "Percent of adults that report excessive drinking" source[11] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[12] = "Motor Vehicle Mortality Rate" cat[12] = "Safety" desc[12] = "Crude motor-vehicle related mortality rate per 100,000 population" source[12] = "Vital Statistics, National Center for Health Statistics (NCHS) 2002-2008" col[13] = "Sexually Transmitted Infections" cat[13] = "Health" desc[13] = "Number of chlamydia cases" source[13] = "CDC National Center for Hepatitis, HIV, STD 2009" col[14] = "Teen Birth Rate" cat[14] = "Health" desc[14] = "Teen birth count, ages 15-19" source[14] = "Vital Statistics, National Center for Health Statistics (NCHS) 2002-2008" col[15] = "Uninsured under 65" cat[15] = "Economic" desc[15] = "Total number of people under age 65 without insurance" source[15] = "Census/American Community Survey (ACS) 2009" col[17] = "Primary Care Physicians" cat[17] = "Environment" desc[17] = "Number of primary care physicians in patient care" source[17] = "Health Resources and Services Administration 2009" col[18] = "ACSC Medicare Preventable Hospital Stays" cat[18] = "Health" desc[18] = "Discharges for ambulatory care sensitive conditions/Medicare enrollees" source[18] = "Dartmouth Atlas 2009" col[19] = "Medicare Enrollees Diabetic Screening" cat[19] = "Health" desc[19] = "Percent of Diabetic Medicare enrollees receiving HbA1c test" source[19] = "Dartmouth Atlas 2009" col[20] = "Medicare Enrollees Mammography Screening" cat[20] = "Health" desc[20] = "Percent of female Medicare enrollees having at least 1 mammogram in 2 yrs (age 67-69)" source[20] = "Dartmouth Atlas 2009" col[21] = "AFGR High School Graduation Rates" cat[21] = "Environment" desc[21] = "Calculated average freshman graduation rate" source[21] = "Sate sources" col[22] = "PSED Post-Secondary Education" cat[22] = "Environment" desc[22] = "Adults age 25-44 with some post-secondary education" source[22] = "Census/American Community Survey (ACS) 2006-2010" col[23] = "Unemployed" cat[23] = "Economic" desc[23] = "Number of people age 16+ unemployed and looking for work" source[23] = "Unemployment Statistics, Bureau of Labor Statistics 2010" col[24] = "Child Poverty" cat[24] = "Economic" desc[24] = "Percent of children (under age 18) living in poverty" source[24] = "Census/CPS 2010" col[25] = "Social-Emotional Support Inadequate" cat[25] = "Health" desc[25] = "Percent of adults that report not getting social/emotional support" source[25] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[26] = "Single Parent Households" cat[26] = "Health" desc[26] = "Number of children that live in single parent households" source[26] = "Census/American Community Survey (ACS) 2006-2010" col[27] = "Violent Crime Rate" cat[27] = "Environment" desc[27] = "Sum of violent crimes" source[27] = "Federal Bureau of Investigation 2007-2009" col[28] = "Air Pollution Particular Matter Days" cat[28] = "Environment" desc[28] = "Number of days that air quality was unhealthy due to fine particulate matter" source[28] = "CDC Environmental Protection Agency (EPA) 2007" col[29] = "Air Pollution Ozone Unhealthy Days" cat[29] = "Environment" desc[29] = "Number of days that air quality was unhealthy due to ozone" source[29] = "CDC Environmental Protection Agency (EPA) 2007" col[30] = "Recreational Facilities Access" cat[30] = "Environment" desc[30] = "Total recreational facilities" source[30] = "Census County Business Patterns 2009" col[31] = "Health Foods Limited Access" cat[31] = "Environment" desc[31] = "Total number of people with limited access to health foods" source[31] = "Census Zip Code Business Patterns 2009" col[32] = "Fast Food Restaurants" cat[32] = "Environment" desc[32] = "Number of zip codes with a healthy food outlet" source[32] = "Census County Business Patterns 2009" # category: Demographics col[33] = "<18 Population" cat[33] = "Demographic" desc[33] = "Percent" source[33] = "US Census Bureau 2009" col[34] = "65+ Population" cat[34] = "Demographic" desc[34] = "Percent" source[34] = "US Census Bureau 2009" col[35] = "African American Population" cat[35] = "Demographic" desc[35] = "Percent" source[35] = "US Census Bureau 2009" col[36] = "American Indian/Alaskan Native Population" cat[36] = "Demographic" desc[36] = "Percent" source[36] = "US Census Bureau 2009" col[37] = "Asian Population" cat[37] = "Demographic" desc[37] = "Percent" source[37] = "US Census Bureau 2009" col[38] = "Native Hawaiian/Other Pacific Population" cat[38] = "Demographic" desc[38] = "Percent" source[38] = "US Census Bureau 2009" col[39] = "Hispanic Population" cat[39] = "Demographic" desc[39] = "Percent" source[39] = "US Census Bureau 2009" col[40] = "Not Proficient in English" cat[40] = "Demographic" desc[40] = "Percent" source[40] = "US Census Bureau 2009" col[41] = "Female Population" cat[41] = "Demographic" desc[41] = "Percent" source[41] = "US Census Bureau 2009" col[42] = "Rural Population" cat[42] = "Demographic" desc[42] = "Percent" source[42] = "US Census Bureau 2009" col[43] = "Diabetics" cat[43] = "Demographic" desc[43] = "Percent" source[43] = "Centers for Disease Control (CDC) 2009" col[44] = "HIV Cases" cat[44] = "Demographic" desc[44] = "Rate of HIV cases" source[44] = "National Center for Hepatitis, HIC, STD 20008" col[46] = "Primary Care Physicians Ratio" cat[46] = "Demographic" desc[46] = "Number of people per PCP" source[46] = "Health Resources & Services Administration (HRSA) 2007" col[47] = "Uninsured Adults" cat[47] = "Demographic" desc[47] = "Percent" source[47] = "Small Area Health Insurance Estimates (SAHIE 2009" col[48] = "Could Not Access Physician Due to Cost" cat[48] = "Demographic" desc[48] = "Percent" source[48] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[50] = "Dentist Ratio" cat[50] = "Demographic" desc[50] = "Number of people per dentist" source[50] = "Health Resources & Services Administration (HRSA) 2007" col[51] = "Household Income" cat[51] = "Demographic" desc[51] = "Median household imcome" source[51] = "Small Area Health Insurance Estimates (SAHIE 2009" col[52] = "High Housing Costs" cat[52] = "Demographic" desc[52] = "Percent" source[52] = "ACS Estimates 2006" col[53] = "Illiteracy" cat[53] = "Demographic" desc[53] = "Percent" source[53] = "National Center for Education Statistics 2003" col[54] = "Homicides" cat[54] = "Demographic" desc[54] = "Total number of homicides" source[54] = "National Center for Health Statistics 2002-2008" col[55] = "Access to Health Foods" cat[55] = "Demographic" desc[55] = "Percent of zip codes with healthy food outlets" source[55] = "Census Zip Code Business Patterns 2009" # clean up if necessary cate = Category.objects.filter(name__in=['Health','Safety','Environment','Economic','Demographic']) if cate: cate.delete() # create the Categories cate = Category(name="Health") cate.save() cate = Category(name="Safety") cate.save() cate = Category(name="Environment") cate.save() cate = Category(name="Economic") cate.save() cate = Category(name="Demographic") cate.save() print "Created Categories" print "Loading CHR Datasets" hidden_cols = [0, 1, 2, 16, 45, 49] book = open_workbook('HealthMap/scripts/data.xls') sheet = book.sheet_by_index(1) # delete existing Datasets dat = Dataset.objects.filter(name__in=col) if dat: dat.delete() for row_index in range(sheet.nrows): state = sheet.cell(row_index,1).value county = sheet.cell(row_index,2).value if len(state)>1 and len(county)<1: # state data row # print state for col_index in range(sheet.ncols): if col_index not in hidden_cols: # find Region reg = Region.objects.filter(stateName=state.strip()) if not reg: print("Missing State: %s" % state) # create Dataset cate = Category.objects.filter(name=cat[col_index]) if not cate: print("Missing Category: %s" % cat[col_index]) if not Dataset.objects.filter(name=col[col_index]): print("Creating Dataset: %s" % col[col_index]) dat = Dataset(category=cate[0], name=col[col_index], description=desc[col_index], citations=source[col_index]) dat.save() dat = Dataset.objects.filter(name=col[col_index]) val = sheet.cell(row_index,col_index).value print("data for Region:%s, [%s] (%s) Dataset:%s" % (reg[0].state, col_index, str(val).strip(), col[col_index])) # create Datarow if there is value if len(str(val).strip())>0: row = Datarow(dataset=dat[0], region=reg[0], value=val) row.save()
def detailRegion(region, region_name): col = [None] * 60 cat = [None] * 60 desc = [None] * 60 source = [None] * 60 col[0] = "FIPS" col[1] = "State" col[2] = "County" col[3] = "Years of Potential Life Lost Rate : " cat[3] = "Health" desc[3] = "Age-adjusted years of potential life lost rate per 100,000" source[3] = "National Center for Health Statistics (NCHS) 2006-2008" col[4] = "Fair/Poor Health : " cat[4] = "Health" desc[ 4] = "Percent of adults that report fair or poor health (age-adjusted)" source[4] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[5] = "Physically Unhealthy Days : " cat[5] = "Health" desc[5] = "Average number of reported physically unhealthy days per month" source[5] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[6] = "Mentally Unhealthy Days : " cat[6] = "Health" desc[6] = "Average number of reported mentally unhealthy days per month" source[6] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[7] = "Low Birth Weight : " cat[7] = "Health" desc[7] = "Percent of births with low birth weight (<2,500g)" source[ 7] = "Vital Statistics, National Center for Health Statistics (NCHS) 2002-2008" col[8] = "Smoking : " cat[8] = "Health" desc[8] = "Percent of adults that reported currently smoking" source[8] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[9] = "Obesity : " cat[9] = "Health" desc[9] = "Percent of adults that report BMI >= 30" source[ 9] = "National Center for Chronic Disease Prevention and Health 2009" col[10] = "Physically Inactive : " cat[10] = "Health" desc[ 10] = "Percent of adults that report no leisure time physical activity" source[ 10] = "National Center for Chronic Disease Prevention and Health 2009" col[11] = "Excessive Drinking : " cat[11] = "Health" desc[11] = "Percent of adults that report excessive drinking" source[11] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[12] = "Motor Vehicle Mortality Rate : " cat[12] = "Safety" desc[ 12] = "Crude motor-vehicle related mortality rate per 100,000 population" source[ 12] = "Vital Statistics, National Center for Health Statistics (NCHS) 2002-2008" col[13] = "Sexually Transmitted Infections : " cat[13] = "Health" desc[13] = "Number of chlamydia cases" source[13] = "CDC National Center for Hepatitis, HIV, STD 2009" col[14] = "Teen Birth Rate : " cat[14] = "Health" desc[14] = "Teen birth count, ages 15-19" source[ 14] = "Vital Statistics, National Center for Health Statistics (NCHS) 2002-2008" col[15] = "Uninsured under 65 : " cat[15] = "Economic" desc[15] = "Total number of people under age 65 without insurance" source[15] = "Census/American Community Survey (ACS) 2009" col[17] = "Primary Care Physicians : " cat[17] = "Environment" desc[17] = "Number of primary care physicians in patient care" source[17] = "Health Resources and Services Administration 2009" col[18] = "ACSC Medicare Preventable Hospital Stays : " cat[18] = "Health" desc[ 18] = "Discharges for ambulatory care sensitive conditions/Medicare enrollees" source[18] = "Dartmouth Atlas 2009" col[19] = "Medicare Enrollees Diabetic Screening : " cat[19] = "Health" desc[19] = "Percent of Diabetic Medicare enrollees receiving HbA1c test" source[19] = "Dartmouth Atlas 2009" col[20] = "Medicare Enrollees Mammography Screening : " cat[20] = "Health" desc[ 20] = "Percent of female Medicare enrollees having at least 1 mammogram in 2 yrs (age 67-69)" source[20] = "Dartmouth Atlas 2009" col[21] = "AFGR High School Graduation Rates : " cat[21] = "Environment" desc[21] = "Calculated average freshman graduation rate" source[21] = "Sate sources" col[22] = "PSED Post-Secondary Education : " cat[22] = "Environment" desc[22] = "Adults age 25-44 with some post-secondary education" source[22] = "Census/American Community Survey (ACS) 2006-2010" col[23] = "Unemployed : " cat[23] = "Economic" desc[23] = "Number of people age 16+ unemployed and looking for work" source[23] = "Unemployment Statistics, Bureau of Labor Statistics 2010" col[24] = "Child Poverty : " cat[24] = "Economic" desc[24] = "Percent of children (under age 18) living in poverty" source[24] = "Census/CPS 2010" col[25] = "Social-Emotional Support Inadequate : " cat[25] = "Health" desc[ 25] = "Percent of adults that report not getting social/emotional support" source[25] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[26] = "Single Parent Households : " cat[26] = "Health" desc[26] = "Number of children that live in single parent households" source[26] = "Census/American Community Survey (ACS) 2006-2010" col[27] = "Violent Crime Rate : " cat[27] = "Environment" desc[27] = "Sum of violent crimes" source[27] = "Federal Bureau of Investigation 2007-2009" col[28] = "Air Pollution Particular Matter Days : " cat[28] = "Environment" desc[ 28] = "Number of days that air quality was unhealthy due to fine particulate matter" source[28] = "CDC Environmental Protection Agency (EPA) 2007" col[29] = "Air Pollution Ozone Unhealthy Days : " cat[29] = "Environment" desc[29] = "Number of days that air quality was unhealthy due to ozone" source[29] = "CDC Environmental Protection Agency (EPA) 2007" col[30] = "Recreational Facilities Access : " cat[30] = "Environment" desc[30] = "Total recreational facilities" source[30] = "Census County Business Patterns 2009" col[31] = "Health Foods Limited Access : " cat[31] = "Environment" desc[31] = "Total number of people with limited access to health foods" source[31] = "Census Zip Code Business Patterns 2009" col[32] = "Fast Food Restaurants : " cat[32] = "Environment" desc[32] = "Number of zip codes with a healthy food outlet" source[32] = "Census County Business Patterns 2009" # category: Demographics col[33] = "<18 Population : " cat[33] = "Demographic" desc[33] = "" source[33] = "US Census Bureau 2009" col[34] = "65+ Population : " cat[34] = "Demographic" desc[34] = "" source[34] = "US Census Bureau 2009" col[35] = "African American Population : " cat[35] = "Demographic" desc[35] = "" source[35] = "US Census Bureau 2009" col[36] = "American Indian/Alaskan Native Population : " cat[36] = "Demographic" desc[36] = "" source[36] = "US Census Bureau 2009" col[37] = "Asian Population : " cat[37] = "Demographic" desc[37] = "" source[37] = "US Census Bureau 2009" col[38] = "Native Hawaiian/Other Pacific Population : " cat[38] = "Demographic" desc[38] = "" source[38] = "US Census Bureau 2009" col[39] = "Hispanic Population : " cat[39] = "Demographic" desc[39] = "" source[39] = "US Census Bureau 2009" col[40] = "Not Proficient in English : " cat[40] = "Demographic" desc[40] = "" source[40] = "US Census Bureau 2009" col[41] = "Female Population : " cat[41] = "Demographic" desc[41] = "" source[41] = "US Census Bureau 2009" col[42] = "Rural Population : " cat[42] = "Demographic" desc[42] = "" source[42] = "US Census Bureau 2009" col[43] = "Diabetics : " cat[43] = "Demographic" desc[43] = "" source[43] = "Centers for Disease Control (CDC) 2009" col[44] = "HIV Cases : " cat[44] = "Demographic" desc[44] = "Rate of HIV cases" source[44] = "National Center for Hepatitis, HIC, STD 20008" col[46] = "Primary Care Physicians Ratio : " cat[46] = "Demographic" desc[46] = "Number of people per PCP" source[46] = "Health Resources & Services Administration (HRSA) 2007" col[47] = "Uninsured Adults : " cat[47] = "Demographic" desc[47] = "" source[47] = "Small Area Health Insurance Estimates (SAHIE 2009" col[48] = "Could Not Access Physician Due to Cost : " cat[48] = "Demographic" desc[48] = "" source[48] = "Behavioral Risk Factor Surveillance System (BRFSS) 2004-2010" col[50] = "Dentist Ratio : " cat[50] = "Demographic" desc[50] = "Number of people per dentist" source[50] = "Health Resources & Services Administration (HRSA) 2007" col[51] = "Household Income : " cat[51] = "Demographic" desc[51] = "Median household imcome" source[51] = "Small Area Health Insurance Estimates (SAHIE 2009" col[52] = "High Housing Costs : " cat[52] = "Demographic" desc[52] = "" source[52] = "ACS Estimates 2006" col[53] = "Illiteracy : " cat[53] = "Demographic" desc[53] = "" source[53] = "National Center for Education Statistics 2003" col[54] = "Homicides : " cat[54] = "Demographic" desc[54] = "Total number of homicides" source[54] = "National Center for Health Statistics 2002-2008" col[55] = "Access to Health Foods : " cat[55] = "Demographic" desc[55] = "Percent of zip codes with healthy food outlets" source[55] = "Census Zip Code Business Patterns 2009" print "Loading CHR Detailed Datasets" hidden_cols = [0, 1, 2, 16, 45, 49] book = open_workbook('HealthMap/scripts/data.xls') sheet = book.sheet_by_index(1) for row_index in range(sheet.nrows): state = sheet.cell(row_index, 1).value fips = sheet.cell(row_index, 0).value county = sheet.cell(row_index, 2).value if len(state) > 1 and len(county) < 1: # state data row print state elif state in region: print("Processing %s" % state) for col_index in range(sheet.ncols): if col_index not in hidden_cols: # find Region reg = Region.objects.filter(stateName=state.strip(), fips=fips) proceed = True if not reg: print("Missing State: %s County:%s" % (state, county)) proceed = False # create Dataset cate = Category.objects.filter(name=cat[col_index]) if not cate: print("Missing Category: %s" % cat[col_index]) proceed = False dataset_name = col[col_index] + region_name if proceed: if not Dataset.objects.filter(name=dataset_name): print("Creating Dataset: %s" % dataset_name) dat = Dataset(category=cate[0], name=dataset_name, description=desc[col_index], citations=source[col_index]) dat.save() dat = Dataset.objects.filter(name=dataset_name) val = sheet.cell(row_index, col_index).value # print("data for Region:%s/%s, (%s) Dataset:%s" % (reg[0].state, reg[0].county, str(val).strip(), dataset_name)) row = Datarow.objects.filter(dataset=dat[0], region=reg[0]) if row: # cleanup if necessary row.delete() # create Datarow if there is value if len(str(val).strip()) > 0: row = Datarow(dataset=dat[0], region=reg[0], value=val) row.save()
def run(): # colors: DARK_GREEN="#006600" GREEN="#009900" LIGHT_GREEN="#33FF66" LIGHT_YELLOW="#FFFF66" YELLOW="#FFFF00" ORANGE="#FFFC00" LIGHT_RED="#FFF900" RED="#FFF000" DARK_RED="#CC0000" DARK="#333333" print "Loading test Datasets" # clean up if necessary cat = Category.objects.filter(name__startswith='Test') if cat: cat.delete() # create the test Category cat = Category(name="Test") cat.save() print "Created Category" # clean up if necessary dat = Dataset.objects.filter(name__startswith='Test') if dat: dat.delete() # create 3 test Datasets dat1 = Dataset(category=cat, name="Test1", description="1st Test Dataset", legend="Empty") dat1.save() dat2 = Dataset(category=cat, name="Test2", description="2nd Test Dataset", legend="Empty") dat2.save() dat3 = Dataset(category=cat, name="Test3", description="3rd Test Dataset", legend="Empty") dat3.save() print "Created Test Datasets" # clean up if necessary ran = Range.objects.filter(name__startswith='Test') if ran: ran.delete() # create the test Ranges ran = Range(dataset=dat1, name="Test Low Range", low=0, high=9, color=GREEN) ran.save() ran = Range(dataset=dat1, name="Test Mid Range", low=10, high=19, color=YELLOW) ran.save() ran = Range(dataset=dat1, name="Test High Range", low=20, high=29, color=RED) ran.save() ran = Range(dataset=dat2, name="Test Low Range", low=0, high=9, color=GREEN) ran.save() ran = Range(dataset=dat2, name="Test Mid Range", low=10, high=19, color=YELLOW) ran.save() ran = Range(dataset=dat2, name="Test High Range", low=20, high=29, color=RED) ran.save() ran = Range(dataset=dat3, name="Test Low Range", low=0, high=9, color=GREEN) ran.save() ran = Range(dataset=dat3, name="Test Mid Range", low=10, high=19, color=YELLOW) ran.save() ran = Range(dataset=dat3, name="Test High Range", low=20, high=29, color=RED) ran.save() print "Created Ranges" # use states.xml to iterate through States xmldoc = minidom.parse('HealthMap/scripts/states.xml') cNodes = xmldoc.childNodes sList = cNodes[0].getElementsByTagName("state") # top level in DOM is States # populate datasets for state in sList: # iterate through each State # create the State record in Datarow table with one zero value # print ("%s (%s)" % (state.getAttribute('name'), state.getAttribute('abbrev'))) reg = Region.objects.filter(state=state.getAttribute('abbrev')) if len(reg)==1: row = Datarow(dataset=dat1, region=reg[0], value=random.randrange(0,29)) row.save() row = Datarow(dataset=dat2, region=reg[0], value=random.randrange(0,29)) row.save() row = Datarow(dataset=dat3, region=reg[0], value=random.randrange(0,29)) row.save() print ("... %s values" % len(sList))
def run(): print "Loading empty Dataset" # create the empty Category cat = Category(name="Empty") cat.save() # clean up if necessary dat = Dataset.objects.filter(name='Empty') if not dat: # create the empty Dataset dat = Dataset(category=cat, name="Empty", description="Empty Dataset", legend="Empty") dat.save() dat = Dataset.objects.filter(name='Empty') # create empty ranges range = Range(dataset=dat[0], name="Low", low=0, high=10, color="#FFFAFA") range.save() range = Range(dataset=dat[0], name="Low-Mid", low=10, high=20, color="#F2F2F2") range.save() range = Range(dataset=dat[0], name="Mid", low=20, high=30, color="#D0CFCF") range.save() range = Range(dataset=dat[0], name="Mid-High", low=30, high=40, color="#ADACAC") range.save() range = Range(dataset=dat[0], name="High", low=40, high=50, color="#8B8989") range.save() range = Range(dataset=dat[0], name="Very High", low=50, high=60, color="#596C56") range.save() row = Datarow.objects.filter(dataset=dat[0]) if row: row.delete() # use states.xml to iterate through States xmldoc = minidom.parse('HealthMap/scripts/states.xml') cNodes = xmldoc.childNodes sList = cNodes[0].getElementsByTagName( "state") # top level in DOM is States for state in sList: # iterate through each State # create the State record in Datarow table with one zero value print("%s (%s)" % (state.getAttribute('name'), state.getAttribute('abbrev'))) reg = Region.objects.filter(state=state.getAttribute('abbrev')) if len(reg) == 1: row = Datarow(dataset=dat[0], region=reg[0], value=0) row.save() print("... %s values" % len(sList))
def run(): # colors: DARK_GREEN = "#006600" GREEN = "#009900" LIGHT_GREEN = "#33FF66" LIGHT_YELLOW = "#FFFF66" YELLOW = "#FFFF00" ORANGE = "#FFFC00" LIGHT_RED = "#FFF900" RED = "#FFF000" DARK_RED = "#CC0000" DARK = "#333333" print "Loading test Datasets" # clean up if necessary cat = Category.objects.filter(name__startswith='Test') if cat: cat.delete() # create the test Category cat = Category(name="Test") cat.save() print "Created Category" # clean up if necessary dat = Dataset.objects.filter(name__startswith='Test') if dat: dat.delete() # create 3 test Datasets dat1 = Dataset(category=cat, name="Test1", description="1st Test Dataset", legend="Empty") dat1.save() dat2 = Dataset(category=cat, name="Test2", description="2nd Test Dataset", legend="Empty") dat2.save() dat3 = Dataset(category=cat, name="Test3", description="3rd Test Dataset", legend="Empty") dat3.save() print "Created Test Datasets" # clean up if necessary ran = Range.objects.filter(name__startswith='Test') if ran: ran.delete() # create the test Ranges ran = Range(dataset=dat1, name="Test Low Range", low=0, high=9, color=GREEN) ran.save() ran = Range(dataset=dat1, name="Test Mid Range", low=10, high=19, color=YELLOW) ran.save() ran = Range(dataset=dat1, name="Test High Range", low=20, high=29, color=RED) ran.save() ran = Range(dataset=dat2, name="Test Low Range", low=0, high=9, color=GREEN) ran.save() ran = Range(dataset=dat2, name="Test Mid Range", low=10, high=19, color=YELLOW) ran.save() ran = Range(dataset=dat2, name="Test High Range", low=20, high=29, color=RED) ran.save() ran = Range(dataset=dat3, name="Test Low Range", low=0, high=9, color=GREEN) ran.save() ran = Range(dataset=dat3, name="Test Mid Range", low=10, high=19, color=YELLOW) ran.save() ran = Range(dataset=dat3, name="Test High Range", low=20, high=29, color=RED) ran.save() print "Created Ranges" # use states.xml to iterate through States xmldoc = minidom.parse('HealthMap/scripts/states.xml') cNodes = xmldoc.childNodes sList = cNodes[0].getElementsByTagName( "state") # top level in DOM is States # populate datasets for state in sList: # iterate through each State # create the State record in Datarow table with one zero value # print ("%s (%s)" % (state.getAttribute('name'), state.getAttribute('abbrev'))) reg = Region.objects.filter(state=state.getAttribute('abbrev')) if len(reg) == 1: row = Datarow(dataset=dat1, region=reg[0], value=random.randrange(0, 29)) row.save() row = Datarow(dataset=dat2, region=reg[0], value=random.randrange(0, 29)) row.save() row = Datarow(dataset=dat3, region=reg[0], value=random.randrange(0, 29)) row.save() print("... %s values" % len(sList))