コード例 #1
0
 def test_audio_data_without_normalization_raises_for_invalid_data(self):
     nt.assert_raises(
         ValueError,
         lambda: display.Audio([1.001], rate=44100, normalize=False))
     nt.assert_raises(
         ValueError,
         lambda: display.Audio([-1.001], rate=44100, normalize=False))
コード例 #2
0
 def test_audio_data_without_normalization(self):
     max_int16 = numpy.iinfo(numpy.int16).max
     for scale in [1, 0.5, 0.2]:
         test_tone = get_test_tone(scale)
         test_tone_max_abs = numpy.max(numpy.abs(test_tone))
         expected_max_value = int(max_int16 * test_tone_max_abs)
         audio = display.Audio(test_tone, rate=44100, normalize=False)
         actual_max_value = numpy.max(numpy.abs(read_wav(audio.data)))
         nt.assert_equal(actual_max_value, expected_max_value)
コード例 #3
0
def test_audio_from_file():
    path = pjoin(dirname(__file__), 'test.wav')
    display.Audio(filename=path)
コード例 #4
0
fname = 'f1.wav'
rate, data = scipy.io.wavfile.read(fname)
data = data.astype(np.float)
t = np.linspace(0, len(data)/rate, len(data))

plt.plot(t,data)
plt.ylabel('Magnitude')
plt.xlabel('Tempo (s)')
plt.show()

c = spec.Wav2Spectrogram() # Objeto que converte arquivos wav para espectrogramas
s = c.convert(open(fname, 'rb'), window_length=2048, window_step=1024, spectrum_type='log')
tr = trim.TrimSpectrogram()
s = tr.trim(s, min_freq=0, max_freq=5000)

d = s.data                                                                   
d = d/np.max(d)                                                           
d = 1 - d                                                                    
                                                                                 
min_freq = s.metadata.min_freq                                               
max_freq = s.metadata.max_freq                                               
min_time = s.metadata.min_time                                               
max_time = s.metadata.max_time                                               
                                                                                
im = plt.imshow(d, aspect='auto', origin='lower', cmap=plt.cm.gray, extent=[min_time, max_time, min_freq/1000.0, max_freq/1000.0])
plt.xlabel('Time (s)')
plt.ylabel('Frequency (kHz)')
plt.show()

display.Audio(fname)
コード例 #5
0
 def test_audio_raises_for_nested_list(self):
     stereo_signal = [list(get_test_tone())] * 2
     nt.assert_raises(TypeError,
                      lambda: display.Audio(stereo_signal, rate=44100))
コード例 #6
0
 def test_audio_data_normalization(self):
     expected_max_value = numpy.iinfo(numpy.int16).max
     for scale in [1, 0.5, 2]:
         audio = display.Audio(get_test_tone(scale), rate=44100)
         actual_max_value = numpy.max(numpy.abs(read_wav(audio.data)))
         nt.assert_equal(actual_max_value, expected_max_value)
コード例 #7
0
 def test_audio_from_list(self):
     test_tone = get_test_tone()
     audio = display.Audio(list(test_tone), rate=44100)
     nt.assert_equal(len(read_wav(audio.data)), len(test_tone))
コード例 #8
0
 def test_audio_from_numpy_array(self):
     test_tone = get_test_tone()
     audio = display.Audio(test_tone, rate=44100)
     nt.assert_equal(len(read_wav(audio.data)), len(test_tone))
コード例 #9
0
ファイル: test_display.py プロジェクト: deep-jkl/ipython
 def test_audio_from_list(self):
     test_tone = get_test_tone()
     audio = display.Audio(list(test_tone), rate=44100)
     assert len(read_wav(audio.data)) == len(test_tone)
コード例 #10
0
# Beat tracking example
from __future__ import print_function
import librosa
import IPython.lib.display as player
import pygame as pg
import tkinter

# 1. Get the file path to the included audio example
filename = "test3.mp3"

# 2. Load the audio as a waveform `y`
#    Store the sampling rate as `sr`
y, sr = librosa.load(filename)
player.Audio(filename=filename)
# 3. Run the default beat tracker
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)

# Run onset tracker
onset_frames = librosa.onset.onset_detect(y=y, sr=sr)

print('Estimated tempo: {:.2f} beats per minute'.format(tempo))

# 4. Convert the frame indices of beat events into timestamps
beat_times = librosa.frames_to_time(beat_frames, sr=sr)

onset_times = librosa.frames_to_time(onset_frames, sr=sr)

print('Saving output to beat_times.csv')
librosa.output.times_csv('beat_times.csv', beat_times)
librosa.output.times_csv('onset_times.csv', onset_times)