コード例 #1
0
                right=0.97,
                bottom=0.05,
                top=0.94,
                wspace=0.26,
                hspace=0.38)

for row in range(4):
    cstep = CSTEPS[row]

    for col in range(4):
        pix = PIXEL_SIZES[col] * ARCSEC_TO_RADIAN

        # Generate the input map
        offx = 1.3 * pix
        offy = -0.8 * pix
        A = MakeEmptyFitsDim(1.0, LAT * DEGREE_TO_RADIAN, pix, N, M)
        B = MakeEmptyFitsDim(1.0, LAT * DEGREE_TO_RADIAN, pix, N, M)
        G = MakeEmptyFitsDim(1.0 + offx, LAT * DEGREE_TO_RADIAN + offy, pix, N,
                             M)
        G[0].data = np.asarray(randn(N, M), np.float32) + 2.0
        J, I = indices((N, M), np.float32)
        for i in range(1000):
            K = 4.0 * log(2.0) / (clip(2.0 + 1.0 * randn(), 2.0, 99)**2.0)
            G[0].data += 98.0 * rand() * exp(-K * ((J - N * rand())**2.0 +
                                                   (I - M * rand())**2.0))
        G[0].data = clip(G[0].data, 1.0, +100.0)
        G[0].data[0:3, :] = 0.0
        G[0].data[-3:, :] = 0.0
        G[0].data[:, 0:3] = 0.0
        G[0].data[:, -3:] = 0.0
        if (1):  # rotate the input image
コード例 #2
0
for itest in range(0, len(NN)):
    N = NN[itest]
    M = NN[itest]
    J, I = indices((N, M))
    I250 = 10.0 + 2.0 * cos(0.05 * I) + 2.0 * sin(0.05 * J)
    T = 15.0 + 2.0 * sin(0.1 * I)
    B = 1.8 + 0.2 * sin(0.1 * J)
    um = asarray([160.0, 250.0, 350.0, 500.0], float32)  # wavelengths [um]
    freq = um2f(um)
    FF, dFF = [], []
    for iband in range(len(um)):
        y = (I250 * ModifiedBlackbody_250(freq[iband], T, B)).reshape(N, M)
        dy = 0.03 * y
        y += dy * randn(N, M)
        F = MakeEmptyFitsDim(1.0, 0.0, 10.0 * ARCSEC_TO_RADIAN, N, M)
        dF = MakeEmptyFitsDim(1.0, 0.0, 10.0 * ARCSEC_TO_RADIAN, N, M)
        F[0].data = y.reshape(N, M)
        dF[0].data = dy.reshape(N, M)
        FF.append(F)
        dFF.append(dF)
    # MBB fits
    # (1) python
    t0 = time.time()
    PI, PT, PB = FitModifiedBlackbody_simple(um, FF, dFF, FF[1][0].data.copy(),
                                             15.0, 1.8)
    RES[itest, 0] = time.time() - t0
    # (2) OpenCL on CPU
    t0 = time.time()
    CI, CT, CB = MBB_fit_CL_FITS(freq, FF, dFF, GPU=0)
    RES[itest, 1] = time.time() - t0
コード例 #3
0
ファイル: test_Nicer.py プロジェクト: mjuvela/ISM
from ISM.Extinction import *
from ISM.Extinction.Nicer import *
from ISM.FITS.FITS import MakeEmptyFitsDim

# Select a target cloud
ra0  = HMS2RAD( 15, 39, 42.0)
de0  = DMS2RAD( -7, 10,  0.0)
box  = 60.0*ARCMIN_TO_RADIAN   # map size in radians
pix  = 0.5*ARCMIN_TO_RADIAN    # pixel size
fwhm = 3.0*ARCMIN_TO_RADIAN    # fwhm of the Av map
npix = int(box/pix)            # map size as number of pixels

# Read 2Mass stars for a reference field (OFF field)
coo, mag, dmag = read_2mass_www(ra0, de0+box, box_size=0.5*box, filename='OFF.2Mass')

# Read 2Mass stars for the ON field
COO, MAG, DMAG = read_2mass_www(ra0, de0    , box_size=box,     filename='ON.2Mass')

# Make a template FITS image for the extinction map and the error map
F  = MakeEmptyFitsDim(ra0, de0, 0.5*ARCMIN_TO_RADIAN, npix, npix)
dF = MakeEmptyFitsDim(ra0, de0, 0.5*ARCMIN_TO_RADIAN, npix, npix)

# Choose extinction curve
EX_AV = get_AX_AV(['J', 'H', 'Ks'], Rv=3.1)

# Calculate extinction and save the results to FITS files
NICER_with_OpenCL(F, COO, MAG, DMAG, mag, dmag, EX_AV, FWHM=3.0*ARCMIN_TO_RADIAN, CLIP=3.0, GPU=0, dF=dF)
F.writeto( 'test_Av.fits' , overwrite=True)
dF.writeto('test_dAv.fits', overwrite=True)

コード例 #4
0
except:
    pass
sys.path.append(ISM_DIRECTORY)
from ISM.Defs import *
from ISM.FITS.FITS import MakeEmptyFitsDim, Reproject, convolve_map_fast, ConvolveFitsPyCL, ConvolveFitsBeamPyCL
import montage_wrapper as montage
import matplotlib.ticker as ticker
from astropy.convolution import convolve as astropy_convolve
from astropy.convolution import Gaussian2DKernel
from scipy.signal import convolve as scipy_convolve
import time
import numpy as np

N = 256  # map size
pix = 10.0 * ARCSEC_TO_RADIAN
FITS = MakeEmptyFitsDim(1.0, 0.0, pix, N, N)
FITS[0].data = asarray(3.0 + randn(N, N), float32)
FITS[0].data = clip(FITS[0].data, 1.0, 10.0)

fwhm_pix = 7.3
fwhm_rad = fwhm_pix * pix
sigma_pix = fwhm_pix / sqrt(8.0 * log(2.0))
kernel = Gaussian2DKernel(x_stddev=sigma_pix)
if (kernel.shape[0] % 2 == 0):
    print("kernel dimensions must be odd")
    sys.exit()

AP = astropy_convolve(FITS[0].data.copy(), kernel, boundary='extend')
if (0):
    CL = ConvolveFitsBeamPyCL(FITS, kernel, border='ignore')[0].data.copy()
else:
コード例 #5
0
ファイル: test_drizzle.py プロジェクト: mjuvela/ISM
threads = 1

DIMS = np.asarray(np.logspace(np.log10(32.0), np.log10(16384.2), 10), int32)
# DIMS =  np.asarray(np.logspace(np.log10(32.0), np.log10( 8192.2),  9),  int32)
# DIMS =  np.asarray(np.logspace(np.log10(32.0), np.log10( 4096.2),  8),  int32)
# DIMS =  np.asarray(np.logspace(np.log10(32.0), np.log10(1024.1), 6), int32)
# DIMS =  np.asarray(np.logspace(np.log10(32.0), np.log10(512.1), 5), int32)
TA = np.zeros(len(DIMS), np.float32)
TC = np.zeros((len(DIMS), 4), np.float32)  # tP, tB, tK, TC
TG1 = np.zeros((len(DIMS), 4), np.float32)  # tP, tB, tK, TC
TG2 = np.zeros((len(DIMS), 4), np.float32)  # tP, tB, tK, TC
for III in range(len(DIMS)):  # loop over different map sizes
    # Generate the input map
    N, M = int(DIMS[III]), int(DIMS[III])
    print("--- %d %d---" % (M, M))
    A = MakeEmptyFitsDim(1.0, 0.0, 10.0 * DEGREE_TO_RADIAN / N, N, M)
    B = MakeEmptyFitsDim(1.0, 0.0, 10.0 * DEGREE_TO_RADIAN / N, N, M)
    G = MakeEmptyFitsDim(1.0 + offx, 0.0 + offy,
                         10.0 * DEGREE_TO_RADIAN / N * scale, N, M)
    G[0].data = np.asarray(randn(N, M), np.float32) + 5.0
    J, I = indices((N, M), np.float32)
    for i in range(30):
        K = 4.0 * log(2.0) / (clip(2.0 + 1.0 * randn(), 2.0, 99)**2.0)
        G[0].data += 100.0 * rand() * exp(-K * ((J - N * rand())**2.0 +
                                                (I - M * rand())**2.0))
    G[0].data[0:3, :] = 0.0
    G[0].data[-3:, :] = 0.0
    G[0].data[:, 0:3] = 0.0
    G[0].data[:, -3:] = 0.0
    if (1):  # rotate the input image
        rot = 30 * DEGREE_TO_RADIAN