コード例 #1
0
ファイル: indexing.py プロジェクト: yns11/tst
 def score(self, UBI, tol=None):
     """
     Decide which are the best orientation matrices
     """
     #      t0=time.time()
     if tol == None:
         return closest.score(UBI, self.gvflat, self.hkl_tol)
     else:
         return closest.score(UBI, self.gvflat, tol)
コード例 #2
0
ファイル: indexer.py プロジェクト: Python3pkg/ImageD11
 def pairs(self, hkl1, hkl2, cos_tol=0.02, hkl_tol=0.05):
     """
     We only look for reflection pairs matching a single hkl pairing
     """
     import time
     start = time.time()
     w = self.transformpars.get("wavelength")
     tth1 = get_tth(self.unitcell.ds(hkl1), w)
     tth2 = get_tth(self.unitcell.ds(hkl2), w)
     tthtol = self.transformpars.get("fit_tolerance")
     allinds = np.arange(self.cf.nrows)
     ind1 = allinds[abs(self.cf.tth - tth1) < tthtol]
     ind2 = allinds[abs(self.cf.tth - tth2) < tthtol]
     angle, cosangle = self.unitcell.anglehkls(hkl1, hkl2)
     print("Angle, cosangle", angle, cosangle, hkl1, hkl2)
     assert angle > 1 and angle < 179, "hkls are parallel"
     g = np.array((self.cf.gx, self.cf.gy, self.cf.gz), np.float)
     n = g / self.cf.modg
     gvf = g.T.copy()
     n1 = n[:, ind1]
     n2 = n[:, ind2]
     pairs = []
     j = np.arange(n2.shape[1])
     # from unitcell.orient
     h1c = unit(np.dot(self.unitcell.B, hkl1))
     h2c = unit(np.dot(self.unitcell.B, hkl2))
     t1c = unit(h1c)
     t3c = unit(np.cross(h1c, h2c))
     t2c = unit(np.cross(h1c, t3c))
     T_c = np.array([t1c, t2c, t3c])
     T_g = np.zeros((3, 3))
     for i, this_n1 in enumerate(n1.T):
         cosa = np.dot(this_n1, n2)
         goodones = j[abs(cosa - cosangle) < cos_tol]
         # t1 is along g1
         # t2 is plane of both: g1x(g1xg2)
         # t3 is perpendicular to both
         #if i%100==0:
         #   print i,time.time()-start,len(n1.T)
         for k in goodones:
             this_n2 = n2[:, k]
             T_g[0] = this_n1
             T_g[2] = unit(np.cross(this_n1, this_n2))
             T_g[1] = unit(np.cross(this_n1, T_g[2]))
             U = np.dot(T_g.T, T_c)
             ub = np.dot(U, self.unitcell.B)
             ubi = np.linalg.inv(ub)
             npks = closest.score(ubi, gvf, 0.1)
             pairs.append((ind1[i], ind2[k], U, ubi))
             print(npks, ubi)
     self.pairs = pairs
     print(time.time() - start, "for", len(pairs), n1.shape, n2.shape)
     return pairs
コード例 #3
0
def gridgrains(
    ul,
    flt,
    pars,
    minx=-750,
    maxx=750,
    stepx=25,
    miny=-750,
    maxy=750,
    stepy=25,
    tol=0.05,
):
    trn = transformer.transformer()
    trn.loadfiltered(flt)
    trn.parameterobj = parameters.parameters(**pars)

    peaks = [trn.getcolumn(trn.xname), trn.getcolumn(trn.yname)]
    peaks_xyz = transform.compute_xyz_lab(peaks,
                                          **trn.parameterobj.get_parameters())

    omega = trn.getcolumn(trn.omeganame)
    trn.updateparameters()
    tx = minx - stepx
    n = 0
    sys.stderr.write("Using tol = %f\n" % (tol))
    while tx <= maxx:
        tx = tx + stepx
        ty = miny - stepy
        while ty <= maxy:
            ty = ty + stepy
            trn.parameterobj.set_parameters({'t_x': tx, 't_y': ty})
            pars = trn.parameterobj.get_parameters()
            tth, eta = transform.compute_tth_eta_from_xyz(
                peaks_xyz, omega, **pars)
            if 'omegasign' in pars:
                om_sgn = float(pars["omegasign"])
            else:
                om_sgn = 1.0

            gv = transform.compute_g_vectors(tth, eta, omega * om_sgn, **pars)
            print(tx, ty, end=' ')
            for ubi in ul:
                ns = score(ubi, gv.T, tol)
                print(ns, end=' ')
                n += ns
            print()
    return n
コード例 #4
0
ファイル: indexing.py プロジェクト: yns11/tst
    def scorethem(self):
        start = time.time()
        ts = 0
        tor = 0
        ng = 0
        tol = float(self.hkl_tol)
        gv = self.gvflat
        all = len(self.hits)
        print "Scoring", all, "potential orientations"
        prog = 0
        ng = 0
        nuniq = 0

        while len(self.hits) > 0 and ng < self.max_grains:
            sys.stdout.write(
                "Tested %8d    Found %8d     Rejected %8d as not being unique\r"
                % (prog, ng, nuniq))
            prog = prog + 1
            diff, i, j = self.hits.pop()
            if self.ga[i] > -1 or self.ga[j] > -1:
                # skip things which are already assigned
                continue
            if i == j:
                continue
            try:
                self.unitcell.orient(self.ring_1,
                                     self.gv[i, :],
                                     self.ring_2,
                                     self.gv[j, :],
                                     verbose=0,
                                     all=False)
            except:
                print i, j, self.ring_1, self.ring_2
                print self.gv[i]
                print self.gv[j]
                raise
            npk = closest.score(self.unitcell.UBI, gv, tol)
            if npk > self.minpks:
                self.unitcell.orient(self.ring_1,
                                     self.gv[i, :],
                                     self.ring_2,
                                     self.gv[j, :],
                                     verbose=0,
                                     all=True)
                npks = [
                    closest.score(UBItest, gv, tol)
                    for UBItest in self.unitcell.UBIlist
                ]
                choice = np.argmax(npks)
                UBI = self.unitcell.UBIlist[choice]
                npk = npks[choice]
                # See if we already have this grain...
                try:
                    ubio = self.refine(UBI.copy())
                    # refine the orientation
                    ind = self.getind(ubio)  # indices of peaks indexed
                    ga = self.ga[ind]  # previous grain assignments
                    uniqueness = np.sum(np.where(ga == -1, 1,
                                                 0)) * 1.0 / ga.shape[0]
                    if uniqueness > self.uniqueness:
                        #                        print "Writing in self.ga"
                        np.put(self.ga, ind, len(self.scores) + 1)
                        self.ubis.append(ubio)
                        self.scores.append(npk)
                        ng = ng + 1
                    else:
                        nuniq = nuniq + 1
                    #            put(self.ga,ind,ng)
                except:
                    raise
        print
        print "Number of orientations with more than", self.minpks, "peaks is", len(
            self.ubis)
        print "Time taken", time.time() - start
        if len(self.ubis) > 0:
            bestfitting = np.argmax(self.scores)
            print "UBI for best fitting\n", self.ubis[bestfitting]
            print "Unit cell\n", ubitocellpars(self.ubis[bestfitting])
            print "Indexes", self.scorelastrefined, "peaks, with <drlv2>=", self.fitlastrefined
            print "That was the best thing I found so far"
            notaccountedfor = np.sum(
                np.where(np.logical_and(self.ga == -1, self.ra != -1), 1, 0))
            print "Number of peaks assigned to rings but not indexed = ",\
                  notaccountedfor
            #self.histogram(self.ubis[bestfitting])
        else:
            print "Try again, either with larger tolerance or fewer minimum peaks"
コード例 #5
0
ファイル: uniqify_ubi.py プロジェクト: siachilles/ImageD11
]
#print len(pks)
hkl = np.array(pks, float).T

uniq_ubis = []
names = list(ubi_all.keys())

tol = 0.25
for name in names:
    this_list = ubi_all[name]
    for ubi, i in zip(this_list, list(range(len(this_list)))):
        gv = np.dot(np.linalg.inv(ubi), hkl)
        seen = 0
        for j in range(len(uniq_ubis)):
            u = uniq_ubis[j][0]
            npk = closest.score(u, gv.T, tol)
            if npk == len(pks):
                # seen you before
                uniq_ubis[j][1].append((name, i))
                uniq_ubis[j][2].append(ubi)
                uniq_ubis[j][0] = np.add.reduce( uniq_ubis[j][2] )/ \
                                            len(uniq_ubis[j][2])
                seen += 1
            #if npk > 50 and npk < len(pks):
            #    print "close...",npk,
        if seen == 0:
            uniq_ubis.append([ubi, [(name, i)], [ubi]])
        if seen > 1:
            print("uniq seen more than once", ubi, i, name)

print("# Found", len(uniq_ubis), "unique ubi matrices")
コード例 #6
0
uniq_ubis = []
names = ubi_all.keys()
#dsu = [ (int( np.split(".")[0].split("_")[-1] ), n) for n in names ]
#dsu.sort()
#names = [d[1] for d in dsu]

tol = 0.05
for name in names[15:]:
    this_list = ubi_all[name]
    for ubi, i in zip(this_list, range(len(this_list))):
        gv = np.dot(np.linal.inv(ubi), hkl)
        seen = 0
        for j in range(len(uniq_ubis)):
            u = uniq_ubis[j][0]
            npk = closest.score(u, gv.T, tol)
            if npk == len(pks):
                # seen you before
                uniq_ubis[j][1].append((name, i))
                seen += 1
            if npk > 12 and npk < len(pks):
                print "close...", npk,
        if seen == 0:
            uniq_ubis.append([ubi, [(name, i)]])
        if seen > 1:
            print "uniq seen more than once", ubi, i, name

print "Found", len(uniq_ubis), "unique ubi matrices"

z = {}
for line in open("job_z.txt", "r").readlines():