img.replace(right_test_dir, label_dir).replace('_R', '').replace( '_1500_maskImg', '').replace('.png', '.dpt').replace('.tif', '.dpt') for img in close_right_filelist ] angle = 5 x_translation = 0 y_translation = 0 scale = 1.0 close_db = myImageloader(left_img_files=close_left_filelist, right_img_files=close_right_filelist, label_files=close_label_filelist, angle=angle, x_translation=x_translation, y_translation=y_translation, scale=scale, train_patch_w=256, transform=transforms.Compose([transforms.ToTensor()]), label_transform=transforms.Compose( [transforms.ToTensor()])) train_loader = torch.utils.data.DataLoader(myImageloader( left_img_files=left_train_filelist, right_img_files=right_train_filelist, label_files=train_labels, angle=angle, x_translation=x_translation, y_translation=y_translation, scale=scale, train_patch_w=256,
angle = 30 translate = 0.1 scale = 1.1 train_filelist = [ os.path.join(train_dir, img) for img in os.listdir(train_dir) ] train_labels = [img.replace(train_dir, label_dir) for img in train_filelist] test_filelist = [os.path.join(train_dir, img) for img in os.listdir(test_dir)] test_labels = [img.replace(test_dir, label_dir) for img in test_filelist] train_loader = torch.utils.data.DataLoader(myImageloader( img_files=train_filelist, label_files=train_labels, angle=angle, translation=translate, scale=scale, transform=transforms.Compose([transforms.ToTensor()]), label_transform=transforms.Compose([transforms.ToTensor()])), batch_size=1, shuffle=True, num_workers=4) test_loader = torch.utils.data.DataLoader(myImageloader( img_files=test_filelist, label_files=test_labels, angle=angle, translation=translate, scale=scale, transform=transforms.Compose([transforms.ToTensor()]), label_transform=transforms.Compose([transforms.ToTensor()])),