コード例 #1
0
    def train(options):
        if not os.path.exists(options.model_path):
            os.makedirs(options.model_path)

        text_processor = TextProcessor(options.tokenizer_path)
        assert text_processor.pad_token_id() == 0
        num_processors = max(torch.cuda.device_count(), 1)

        mt_model = SenSim(text_processor=text_processor, enc_layer=options.encoder_layer, embed_dim=options.embed_dim,
                          intermediate_dim=options.intermediate_layer_dim)

        if options.pretrained_path is not None:
            pret = Seq2Seq.load(Seq2Seq, options.pretrained_path, tok_dir=options.tokenizer_path)
            mt_model.init_from_lm(pret)

        print("Model initialization done!")

        optimizer = build_optimizer(mt_model, options.learning_rate, warump_steps=options.warmup)
        trainer = SenSimTrainer(model=mt_model, mask_prob=options.mask_prob, optimizer=optimizer, clip=options.clip,
                                fp16=options.fp16)

        pin_memory = torch.cuda.is_available()

        mt_train_loader = SenSimTrainer.get_mt_train_data(mt_model, num_processors, options, pin_memory)
        src_neg_data = dataset.MassDataset(batch_pickle_dir=options.src_neg,
                                           max_batch_capacity=num_processors * options.total_capacity * 5,
                                           max_batch=num_processors * options.batch * 5,
                                           pad_idx=mt_model.text_processor.pad_token_id(), keep_pad_idx=False,
                                           max_seq_len=options.max_seq_len, keep_examples=False)
        dst_neg_data = dataset.MassDataset(batch_pickle_dir=options.dst_neg,
                                           max_batch_capacity=num_processors * options.total_capacity * 5,
                                           max_batch=num_processors * options.batch * 5,
                                           pad_idx=mt_model.text_processor.pad_token_id(), keep_pad_idx=False,
                                           max_seq_len=options.max_seq_len, keep_examples=False)

        src_neg_loader = data_utils.DataLoader(src_neg_data, batch_size=1, shuffle=True, pin_memory=pin_memory)
        dst_neg_loader = data_utils.DataLoader(dst_neg_data, batch_size=1, shuffle=True, pin_memory=pin_memory)

        mt_dev_loader = None
        if options.mt_dev_path is not None:
            mt_dev_loader = SenSimTrainer.get_mt_dev_data(mt_model, options, pin_memory, text_processor, trainer, )

        step, train_epoch = 0, 1
        trainer.best_loss = 1000000
        while options.step > 0 and step < options.step:
            print("train epoch", train_epoch)
            step = trainer.train_epoch(mt_train_iter=mt_train_loader, max_step=options.step, mt_dev_iter=mt_dev_loader,
                                       saving_path=options.model_path, step=step, src_neg_iter=src_neg_loader,
                                       dst_neg_iter=dst_neg_loader)
            train_epoch += 1
コード例 #2
0
    def train(options):
        lex_dict = None
        if options.dict_path is not None:
            lex_dict = get_lex_dict(options.dict_path)
        if not os.path.exists(options.model_path):
            os.makedirs(options.model_path)

        text_processor = TextProcessor(options.tokenizer_path)
        assert text_processor.pad_token_id() == 0

        image_captioner = Seq2Seq.load(ImageCaptioning, options.pretrained_path, tok_dir=options.tokenizer_path)
        txt2ImageModel = Caption2Image(text_processor=text_processor, enc_layer=options.encoder_layer,
                                       embed_dim=options.embed_dim, intermediate_dim=options.intermediate_layer_dim)

        print("Model initialization done!")

        # We assume that the collator function returns a list with the size of number of gpus (in case of cpus,
        collator = dataset.ImageTextCollator()
        num_batches = max(1, torch.cuda.device_count())

        optimizer = build_optimizer(txt2ImageModel, options.learning_rate, warump_steps=options.warmup)

        trainer = Caption2ImageTrainer(model=txt2ImageModel, caption_model=image_captioner, mask_prob=options.mask_prob,
                                       optimizer=optimizer,
                                       clip=options.clip,
                                       beam_width=options.beam_width, max_len_a=options.max_len_a,
                                       max_len_b=options.max_len_b, len_penalty_ratio=options.len_penalty_ratio,
                                       fp16=options.fp16, mm_mode=options.mm_mode)

        pin_memory = torch.cuda.is_available()
        img_train_loader = ImageMTTrainer.get_img_loader(collator, dataset.ImageCaptionDataset, options.train_path,
                                                         txt2ImageModel, num_batches, options, pin_memory,
                                                         lex_dict=lex_dict)

        img_dev_loader = ImageMTTrainer.get_img_loader(collator, dataset.ImageCaptionDataset, options.dev_path,
                                                       txt2ImageModel, num_batches, options, pin_memory,
                                                       lex_dict=lex_dict,
                                                       shuffle=False, denom=2)

        step, train_epoch = 0, 1
        while options.step > 0 and step < options.step:
            print("train epoch", train_epoch)
            step = trainer.train_epoch(img_data_iter=img_train_loader, img_dev_data_iter=img_dev_loader,
                                       max_step=options.step, lex_dict=lex_dict,
                                       saving_path=options.model_path, step=step)
            train_epoch += 1
コード例 #3
0
def build_model(options):
    model = Seq2Seq.load(ImageCaptioning,
                         options.model_path,
                         tok_dir=options.tokenizer_path)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    num_gpu = torch.cuda.device_count()
    generator = BeamDecoder(model,
                            beam_width=options.beam_width,
                            max_len_a=options.max_len_a,
                            max_len_b=options.max_len_b,
                            len_penalty_ratio=options.len_penalty_ratio)
    if options.fp16:
        generator = amp.initialize(generator, opt_level="O2")
    if num_gpu > 1:
        generator = DataParallelModel(generator)
    return generator, model.text_processor
コード例 #4
0
    def test_albert_seq2seq_init(self):
        path_dir_name = os.path.dirname(os.path.realpath(__file__))
        data_path = os.path.join(path_dir_name, "sample.txt")

        with tempfile.TemporaryDirectory() as tmpdirname:
            processor = TextProcessor()
            processor.train_tokenizer([data_path],
                                      vocab_size=1000,
                                      to_save_dir=tmpdirname,
                                      languages={
                                          "<en>": 0,
                                          "<fa>": 1
                                      })
            seq2seq = Seq2Seq(text_processor=processor)
            src_inputs = torch.tensor([[
                1, 2, 3, 4, 5,
                processor.pad_token_id(),
                processor.pad_token_id()
            ], [1, 2, 3, 4, 5, 6, processor.pad_token_id()]])
            tgt_inputs = torch.tensor(
                [[6, 8, 7,
                  processor.pad_token_id(),
                  processor.pad_token_id()],
                 [6, 8, 7, 8, processor.pad_token_id()]])
            src_mask = (src_inputs != processor.pad_token_id())
            tgt_mask = (tgt_inputs != processor.pad_token_id())
            src_langs = torch.tensor([[0], [0]]).squeeze()
            tgt_langs = torch.tensor([[1], [1]]).squeeze()
            seq_output = seq2seq(src_inputs,
                                 tgt_inputs,
                                 src_mask,
                                 tgt_mask,
                                 src_langs,
                                 tgt_langs,
                                 log_softmax=True)
            assert list(seq_output.size()) == [5, processor.vocab_size()]

            seq_output = seq2seq(src_inputs, tgt_inputs, src_mask, tgt_mask,
                                 src_langs, tgt_langs)
            assert list(seq_output.size()) == [5, processor.vocab_size()]
コード例 #5
0
            [text_processor.lang_id(sentences[sid].strip().split(" ")[0])])
        yield sid, source_tokenized, torch.LongTensor(
            tids), candidates, src_lang, torch.LongTensor(target_langs)


if __name__ == "__main__":
    parser = get_option_parser()
    (options, args) = parser.parse_args()

    print("Loading text processor...")
    text_processor = TextProcessor(options.tokenizer_path)
    num_processors = max(torch.cuda.device_count(), 1)

    print("Loading model...")
    model = Seq2Seq.load(Seq2Seq,
                         options.model,
                         tok_dir=options.tokenizer_path)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    num_gpu = torch.cuda.device_count()

    assert num_gpu <= 1
    if options.fp16:
        model = amp.initialize(model, opt_level="O2")

    max_capacity = options.total_capacity * 1000000
    with torch.no_grad(), open(options.output, "w") as writer:
        print("Loading data...")
        with open(options.sens, "rb") as fp, open(options.data, "rb") as fp2:
            sentences = marshal.load(fp)
            src2dst_dict = marshal.load(fp2)
コード例 #6
0
    def train(options):
        lex_dict = None
        if options.dict_path is not None:
            lex_dict = get_lex_dict(options.dict_path)
        if not os.path.exists(options.model_path):
            os.makedirs(options.model_path)

        text_processor = TextProcessor(options.tokenizer_path)
        assert text_processor.pad_token_id() == 0
        num_processors = max(torch.cuda.device_count(), 1)

        if options.pretrained_path is not None:
            print("Loading pretrained path", options.pretrained_path)
            mt_model = Seq2Seq.load(ImageMassSeq2Seq,
                                    options.pretrained_path,
                                    tok_dir=options.tokenizer_path)
        else:
            mt_model = ImageMassSeq2Seq(
                use_proposals=lex_dict is not None,
                tie_embed=options.tie_embed,
                text_processor=text_processor,
                resnet_depth=options.resnet_depth,
                lang_dec=options.lang_decoder,
                enc_layer=options.encoder_layer,
                dec_layer=options.decoder_layer,
                embed_dim=options.embed_dim,
                intermediate_dim=options.intermediate_layer_dim)

        if options.lm_path is not None:
            lm = LM(text_processor=text_processor,
                    enc_layer=options.encoder_layer,
                    embed_dim=options.embed_dim,
                    intermediate_dim=options.intermediate_layer_dim)
            mt_model.init_from_lm(lm)

        print("Model initialization done!")

        # We assume that the collator function returns a list with the size of number of gpus (in case of cpus,
        collator = dataset.ImageTextCollator()
        num_batches = max(1, torch.cuda.device_count())

        if options.continue_train:
            with open(os.path.join(options.pretrained_path, "optim"),
                      "rb") as fp:
                optimizer = pickle.load(fp)
        else:
            optimizer = build_optimizer(mt_model,
                                        options.learning_rate,
                                        warump_steps=options.warmup)
        trainer = ImageMTTrainer(model=mt_model,
                                 mask_prob=options.mask_prob,
                                 optimizer=optimizer,
                                 clip=options.clip,
                                 beam_width=options.beam_width,
                                 max_len_a=options.max_len_a,
                                 max_len_b=options.max_len_b,
                                 len_penalty_ratio=options.len_penalty_ratio,
                                 fp16=options.fp16,
                                 mm_mode=options.mm_mode)

        pin_memory = torch.cuda.is_available()

        mt_train_loader = None
        if options.mt_train_path is not None:
            mt_train_loader = ImageMTTrainer.get_mt_train_data(
                mt_model,
                num_processors,
                options,
                pin_memory,
                lex_dict=lex_dict)

        mt_dev_loader = None
        if options.mt_dev_path is not None:
            mt_dev_loader = ImageMTTrainer.get_mt_dev_data(mt_model,
                                                           options,
                                                           pin_memory,
                                                           text_processor,
                                                           trainer,
                                                           lex_dict=lex_dict)

        step, train_epoch = 0, 1
        while options.step > 0 and step < options.step and train_epoch <= 10:
            print("train epoch", train_epoch, "step:", step)
            step = trainer.train_epoch(mt_train_iter=mt_train_loader,
                                       max_step=options.step,
                                       lex_dict=lex_dict,
                                       mt_dev_iter=mt_dev_loader,
                                       saving_path=options.model_path,
                                       step=step,
                                       save_opt=False)
            train_epoch += 1
コード例 #7
0
    def train(options):
        lex_dict = None
        if options.dict_path is not None:
            lex_dict = get_lex_dict(options.dict_path)
        if not os.path.exists(options.model_path):
            os.makedirs(options.model_path)

        text_processor = TextProcessor(options.tokenizer_path)
        assert text_processor.pad_token_id() == 0

        if options.pretrained_path is not None:
            mt_model = Seq2Seq.load(ImageCaptioning,
                                    options.pretrained_path,
                                    tok_dir=options.tokenizer_path)
        else:
            mt_model = ImageCaptioning(
                use_proposals=lex_dict is not None,
                tie_embed=options.tie_embed,
                text_processor=text_processor,
                resnet_depth=options.resnet_depth,
                lang_dec=options.lang_decoder,
                enc_layer=options.encoder_layer,
                dec_layer=options.decoder_layer,
                embed_dim=options.embed_dim,
                intermediate_dim=options.intermediate_layer_dim)

        if options.lm_path is not None:
            lm = LM(text_processor=text_processor,
                    enc_layer=options.encoder_layer,
                    embed_dim=options.embed_dim,
                    intermediate_dim=options.intermediate_layer_dim)
            mt_model.init_from_lm(lm)

        print("Model initialization done!")

        # We assume that the collator function returns a list with the size of number of gpus (in case of cpus,
        collator = dataset.ImageTextCollator()
        num_batches = max(1, torch.cuda.device_count())

        if options.continue_train:
            with open(os.path.join(options.pretrained_path, "optim"),
                      "rb") as fp:
                optimizer = pickle.load(fp)
        else:
            optimizer = build_optimizer(mt_model,
                                        options.learning_rate,
                                        warump_steps=options.warmup)
        trainer = ImageCaptionTrainer(
            model=mt_model,
            mask_prob=options.mask_prob,
            optimizer=optimizer,
            clip=options.clip,
            beam_width=options.beam_width,
            max_len_a=options.max_len_a,
            max_len_b=options.max_len_b,
            len_penalty_ratio=options.len_penalty_ratio,
            fp16=options.fp16,
            mm_mode=options.mm_mode)

        pin_memory = torch.cuda.is_available()
        img_train_loader = ImageMTTrainer.get_img_loader(
            collator,
            dataset.ImageCaptionDataset,
            options.train_path,
            mt_model,
            num_batches,
            options,
            pin_memory,
            lex_dict=lex_dict)

        img_dev_loader = ImageMTTrainer.get_img_loader(
            collator,
            dataset.ImageCaptionDataset,
            options.dev_path,
            mt_model,
            num_batches,
            options,
            pin_memory,
            lex_dict=lex_dict,
            shuffle=False,
            denom=2)

        trainer.reference = None
        if img_dev_loader is not None:
            trainer.reference = []
            generator = (trainer.generator.module if hasattr(
                trainer.generator, "module") else trainer.generator)
            for data in img_dev_loader:
                for batch in data:
                    captions = [b["captions"] for b in batch]
                    for caption in captions:
                        refs = get_outputs_until_eos(
                            text_processor.sep_token_id(),
                            caption,
                            remove_first_token=True)
                        ref = [
                            generator.seq2seq_model.text_processor.tokenizer.
                            decode(ref.numpy()) for ref in refs
                        ]
                        trainer.reference += ref

        step, train_epoch = 0, 1
        while options.step > 0 and step < options.step:
            print("train epoch", train_epoch)
            step = trainer.train_epoch(img_data_iter=img_train_loader,
                                       img_dev_data_iter=img_dev_loader,
                                       max_step=options.step,
                                       lex_dict=lex_dict,
                                       saving_path=options.model_path,
                                       step=step)
            train_epoch += 1