コード例 #1
0
def applyKernel(inputImage, kernelImage):
    height = len(inputImage)
    width = len(inputImage[0])

    kernelHeight = len(kernelImage)
    kerelWidth = len(kernelImage[0])

    kernelCentreY = int((kernelHeight - 1) / 2)
    kernelCentreX = int((kerelWidth - 1) / 2)

    # Create images to store the result
    outputImage = createImageL(width, height)

    for x, y in itertools.product(range(0, width), range(0, height)):
        sumKernel = 0
        sumKernelWeights = 0
        for wx, wy in itertools.product(range(0, kerelWidth),
                                        range(0, kernelHeight)):
            posY = y + wy - kernelCentreY
            posX = x + wx - kernelCentreX

            if posY > -1 and posY < height and posX > -1 and posX < width:
                sumKernel += float(inputImage[posY, posX]) * kernelImage[wy,
                                                                         wx]
                sumKernelWeights += kernelImage[wy, wx]

        if sumKernelWeights > 0:
            outputImage[y, x] = sumKernel / sumKernelWeights

    return outputImage
コード例 #2
0
def showShapeinImage(shape, centre, width, height):
    segmentsImage = createImageL(width, height)
    numPoints = len(shape[0])
    for p in range(0, numPoints):
        y, x = int(centre[0] + shape[0, p]), int(centre[1] + shape[1, p])
        if x > 0 and y > 0 and x < width and y < height:
            segmentsImage[y, x] = 255
    showImageL(segmentsImage)
def thresholdImage(inputImage, threshold, binary = True):

    height = len(inputImage)
    width = len(inputImage[0])   
    
    # Create images to store the result
    outputImage = createImageL(width, height)

    # Set the pixels in the output image according to the accumulate histogram
    for x,y in itertools.product(range(0, width), range(0, height)):
  
        if inputImage[y,x] > threshold:
            if binary:
                outputImage[y,x] = 255
            else:
                outputImage[y,x] = inputImage[y,x]
        else:
            outputImage[y,x] = 0
                
    return outputImage
コード例 #4
0
    pathToDir = Input image directory
    imageName = Input image name
    kernelSize = Size of the kernel
'''
pathToDir = "../../Images/Chapter3/Input/"
imageName = "Fence.png"
kernelSize = 5

# Read image into array
inputImage, width, height  = imageReadL(pathToDir + imageName)

# Show input image
showImageL(inputImage)

# Create images to store the result
outputImage = createImageL(width, height)

# Apply filter
kernelCentre = int((kernelSize - 1) / 2)
for x,y in itertools.product(range(0, width), range(0, height)):
    region = [ ]
    for wx,wy in itertools.product(range(0, kernelSize), range(0, kernelSize)):

        posY = y + wy - kernelCentre
        posX = x + wx - kernelCentre 
        
        if posY > -1 and posY <  height and  posX > -1 and posX <  width:
            region.append(inputImage[posY,posX]) 
    
    numPixels = len(region) 
    if  numPixels > 0:
'''
Parameters:
    pathToDir = Input image directory
    imageName = Input image name
'''
pathToDir = "../../Images/Chapter3/Input/"
imageName = "Horse.png"

# Read image into array
inputImage, width, height = imageReadL(pathToDir + imageName)

# Show input image
showImageL(inputImage)

# Create image to store the normalization
outputNormalizedImage = createImageL(width, height)

# Maximum and range
maxVal, miniVal = imageMaxMin(inputImage)
brightRange = float(maxVal - miniVal)

# Set the pixels in the output image
for x, y in itertools.product(range(0, width), range(0, height)):

    # Normalize the pixel value according to the range
    outputNormalizedImage[y, x] = round(
        (inputImage[y, x] - miniVal) * 255.0 / brightRange)

# Compute histogram
histogramNormalizedImage = computeHistogram(outputNormalizedImage)
コード例 #6
0
from timeit import itertools

'''
Parameters:
    pathToDir = Input image directory
    imageName = Input image name
'''
pathToDir = "../../Images/Chapter2/Input/"
imageName = "Dandelion.png"

# Read image into array
inputImage, width, height  = imageReadL(pathToDir + imageName)

# Shift the image
shiftDistance =  int(width / 3);
shiftImage = createImageL(width, height)

for x,y in itertools.product(range(0, width), range(0, height)):
    xShift = (x - shiftDistance) % width 
    shiftImage[y][x] = inputImage[y][xShift]

# Show images
showImageL(inputImage)
showImageL(shiftImage)

# Compute power and phase 
powerImage, phaseImage  = computePowerandPhase(inputImage)
powerShiftImage, phaseShiftImage = computePowerandPhase(shiftImage)
 
# Show power
powerImageLog = imageLogF(powerImage)
    imageName = Input image name
    kernelSize = Size of the kernel
'''
pathToDir = "../../Images/Chapter3/Input/"
imageName = "Logs.png"
kernelSize = 5

# Read image into array
inputImage, width, height = imageReadL(pathToDir + imageName)

# Show input image
showImageL(inputImage)

# Create Kernel
kernelCentre = int((kernelSize - 1) / 2)
kernelImage = createImageL(kernelSize, kernelSize)

# Set the pixels of a flat kernel
for x in range(0, kernelSize):
    for y in range(0, kernelSize):
        kernelImage[y, x] = 1

# Create images to store the result
outputImage = createImageL(width, height)

# Apply kernel
kernelCentre = int((kernelSize - 1) / 2)
for x, y in itertools.product(range(0, width), range(0, height)):

    maxValue = 0
    for wx, wy in itertools.product(range(0, kernelSize), range(0,
コード例 #8
0
    pathToDir = Input image directory
    imageName = Input image name
    intevalSize = Define the sawtooth fixed interval size
'''
pathToDir = "../../Images/Chapter3/Input/"
imageName = "Horse.png"
intevalSize = 64

# Read image into array
inputImage, width, height = imageReadL(pathToDir + imageName)

# Show input image
showImageL(inputImage)

# Create 3 images to store the result of 3 operators
outputSawtoothImage = createImageL(width, height)
outputLogarithmicImage = createImageL(width, height)
outputExponentialImage = createImageL(width, height)

# Set the pixels in the output image
for x, y in itertools.product(range(0, width), range(0, height)):
    inputValue = int(inputImage[y, x])

    # Set the pixels in the sawtooth image
    pixelInInterval = inputValue % intevalSize
    gain = float(pixelInInterval) / float(intevalSize)
    outputSawtoothImage[y, x] = inputValue * gain

    # Set the pixels in the Logarithmic
    outputLogarithmicImage[y, x] = 20 * log(inputValue * 100.0)
sigma = 2

# Read image into array
inputImage, width, height = imageReadL(pathToDir + imageName)

# Show input image
showImageL(inputImage)

# Create Kernel
kernelLaplacian = createLaplacianKernel(kernelSize, sigma)

# Apply kernel
gaussianImage = applyKernelF(inputImage, kernelLaplacian)

# Zero-crossing detector
edges = createImageL(width, height)
kernelCentre = int((kernelSize - 1) / 2)
for x, y in itertools.product(range(1, width - 1), range(1, height - 1)):
    quadrantValue = [0.0, 0.0, 0.0, 0.0]
    for wx, wy in itertools.product(range(-1, 1), range(-1, 1)):
        quadrantValue[0] += gaussianImage[y + wy, x + wx]

    for wx, wy in itertools.product(range(-1, 1), range(0, 2)):
        quadrantValue[1] += gaussianImage[y + wy, x + wx]

    for wx, wy in itertools.product(range(0, 2), range(-1, 1)):
        quadrantValue[2] += gaussianImage[y + wy, x + wx]

    for wx, wy in itertools.product(range(0, 2), range(0, 2)):
        quadrantValue[3] += gaussianImage[y + wy, x + wx]