def __init__(self, model = "Schaffer"): self.evals = 0 if model == "Schaffer": self.model = Schaffer() elif model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe()
def objs(self, x): mod = Kursawe() min_objs, max_objs = mod.baseline_objs() frontier = ga(x[0], x[1], x[2]).run(mod) filename = "hyper.out" Utility.write_to_file(mod, filename, frontier, min_objs, max_objs) output = HyperVolume_wrapper() ## Will always hve = 0 for out in output: hve = out.hypervolume return hve
def __init__(self, model = "Kursawe", probability = 0.5, no_steps = 10, baseline_top = -10**6, baseline_bottom = 10**6): self.n = 6 self.p = probability self.evals = 0 self.steps = no_steps self.number_of_evaluations = 0 self.threshold = - 400 if model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() self.model.resetBaselines() self.current_state = self.model.get_random_state()
def __init__(self, model="Kursawe", probability=0.5, no_steps=20, baseline_top=-10**6, baseline_bottom=10**6): self.n = 6 self.p = probability self.evals = 0 self.steps = no_steps self.number_of_evaluations = 0 self.threshold = -400 if model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() elif model == "Schaffer": self.model = Schaffer() elif model == "DTLZ7": self.model = DTLZ7(10, 2) self.model.resetBaselines() #self.threshold = self.model.baseline_low self.current_state = self.model.get_random_state()
def __init__(self, model="Osyczka"): self.top_bound = [3.6, 0.8, 28.0, 8.3, 8.3, 3.9, 5.5] self.bottom_bound = [2.6, 0.7, 17.0, 7.3, 7.3, 2.9, 5] self.f2_high = -10**6 self.f2_low = 10**6 self.f1_high = -10**6 self.f1_low = 10**6 self.evals = 0 self.median = [] if model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() elif model == "Schaffer": self.model = Schaffer() self.best_solution = Thing() self.best_solution.score = 0 self.best_solution.energy = 1 self.best_solution.have = []
class SA: def __init__(self, model="Schaffer"): self.evals = 0 if model == "Schaffer": self.model = Schaffer() elif model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() elif model == "DTLZ7": self.model = DTLZ7(10, 2) def __repr__(self): return time.strftime( "%Y-%m-%d %H:%M:%S" ) + "\nSimulated Annealing on the Schaffer model\n" def P(self, old_e, new_e, k): return math.e**((old_e - new_e) / k) def run(self): kmax = 1000 max_e = -0.1 output = '' current_s = self.model.get_random_state() best_s = current_s current_e = self.model.normalize_energy(self.model.energy(current_s)) best_e = current_e MAX_LIVES = 10 ERA_LENGTH = 100 k = 1 era_List = [] current_era = [] lives = MAX_LIVES while k < kmax and current_e > max_e: neighbor_s = self.model.get_random_state() # print 'Neighbor: ' + str(neighbor_s) neighbor_e = self.model.normalize_energy( self.model.energy(neighbor_s)) # print current_e, neighbor_e, tmp if self.model.type1(best_s, neighbor_s): # print "Neighbor better " + str(best_e) + " " + str(neighbor_e) best_s, best_e = neighbor_s, neighbor_e temp = ' !' if self.model.type1(neighbor_s, current_s): current_s, current_e = neighbor_s, neighbor_e temp = ' +' elif self.P(current_e, neighbor_e, (1 - (float(k) / kmax))**5) > random(): current_s, current_e = neighbor_s, neighbor_e temp = ' ?' else: temp = ' .' if temp != ' .': current_era.append(neighbor_s) if len(current_era) == ERA_LENGTH: #print current_era if len(era_List) > 0: increment = self.model.type2(current_era, era_List[-1]) lives += increment if increment <= 0: print "Reducing lives by 1" if lives <= 0: print "Early termination" return best_e era_List.append(current_era) current_era = [] output += temp if k % 25 == 0: print output + "Best state: ", best_e output = '' k += 1 print 'Best State Found: ' + str(best_s) print 'Energy At Best State: ' + str(best_e) return best_e
class MaxWalkSat: def __init__(self, model = "Kursawe", probability = 0.5, no_steps = 10, baseline_top = -10**6, baseline_bottom = 10**6): self.n = 6 self.p = probability self.evals = 0 self.steps = no_steps self.number_of_evaluations = 0 self.threshold = - 400 if model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() self.model.resetBaselines() self.current_state = self.model.get_random_state() def modify_to_better_state(self, state, index): if(index > len(self.model.top_bound)): return None increment = (self.model.top_bound[index] - self.model.bottom_bound[index])/self.steps temp_state = list(state) best_state = state for _ in range(0, self.steps): temp_state[index] += increment self.evals += 1 if self.model.energy(temp_state) < self.model.energy(best_state) and self.model.are_constraints_satisfied(temp_state): best_state = list(temp_state) state = best_state return state def retry(self, state): index = randint(0, (self.model.getNumberOfDecisions() - 1)) temp_state = list(state) if self.p < random(): #print self.model.bottom_bound[index] #print self.model.top_bound[index] temp_state[index] = self.model.bottom_bound[index] + (self.model.top_bound[index] - self.model.bottom_bound[index])*random() if self.model.are_constraints_satisfied(temp_state): return temp_state else: return state else: temp_state = self.modify_to_better_state(temp_state, index) if temp_state == state: return temp_state else: return temp_state def run(self): max_tries = 100 max_changes = 50 self.model.resetBaselines() best_state = self.model.get_random_state() output = str() for _ in range(0, max_tries): current_state = self.model.get_random_state() for i in range(0, max_changes): if self.model.energy(current_state) < self.threshold: return current_state else: new_state = self.retry(current_state) operation = "" if self.model.energy(new_state) > self.model.energy(best_state): best_state = new_state operation = "!" elif self.model.energy(new_state) > self.model.energy(current_state): operation = "+" elif self.model.energy(new_state) < self.model.energy(current_state): operation = "." output += operation if len(output) == 50: print output + " current best state energy(normalized) = " + str(self.model.energy(best_state)) + " Evaluations: " + str(self.evals) output = "" print output + " current best state energy(normalized) = " + str(self.model.aggregate_energy(best_state)) + " Evaluations: " + str(self.evals) return best_state
class SA: def __init__(self, model = "Schaffer"): self.evals = 0 if model == "Schaffer": self.model = Schaffer() elif model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() def __repr__(self): return time.strftime("%Y-%m-%d %H:%M:%S") + "\nSimulated Annealing on the Schaffer model\n" def P(self, old_e, new_e, k): return math.e ** ((old_e - new_e) / k) def run(self): kmax = 1000 max_e = -0.1 output = '' current_s = self.model.get_random_state() best_s = current_s current_e = self.model.normalize_energy(self.model.energy(current_s), self.model.baseline_low, self.model.baseline_high) best_e = current_e k = 1 current_era = [] eras = [] lives = 5 ERA_LENGTH = 10 while k < kmax and current_e > max_e: neighbor_s = self.model.get_random_state() # print 'Neighbor: ' + str(neighbor_s) neighbor_e = self.model.normalize_energy(self.model.energy(neighbor_s), self.model.baseline_low, self.model.baseline_high) # print current_e, neighbor_e, tmp if neighbor_e < best_e: best_s, best_e = neighbor_s, neighbor_e output += ' !' if neighbor_e < current_e: current_s, current_e = neighbor_s, neighbor_e output += ' +' elif self.P(current_e, neighbor_e, (1-(float(k)/kmax))**5) > random.random(): current_s, current_e = neighbor_s, neighbor_e output += ' ?' else: output += ' .' current_era.append(self.model.normalize_energy(current_e, self.model.baseline_low, self.model.baseline_high)) if len(current_era) == ERA_LENGTH and len(eras) > 0: if a12(current_era, eras[-1]) < 0.56: lives -= 1 print "Lives:" + str(lives) + " a12 statistic:" + str(a12(current_era, eras[-1])), else: lives = 5 if len(current_era) == ERA_LENGTH: eras.append(current_era) current_era = [] if lives <= 0: print "Early termination" break if k % 25 == 0: print ', %4d, : %d, %25s' % (k, self.model.denormalize_energy(best_e), output) output = '' k += 1 print print 'Best State Found: ' + str(best_s) print 'Energy At Best State: ' + str(self.model.denormalize_energy(best_e)) print return best_e
class SA: def __init__(self, model = "Schaffer"): self.evals = 0 if model == "Schaffer": self.model = Schaffer() elif model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() def __repr__(self): return time.strftime("%Y-%m-%d %H:%M:%S") + "\nSimulated Annealing on the Schaffer model\n" def P(self, old_e, new_e, k): return math.e ** ((old_e - new_e) / k) def run(self): kmax = 1000 max_e = -0.1 output = '' current_s = self.model.get_random_state() best_s = current_s current_e = self.model.normalize_energy(self.model.energy(current_s), self.model.baseline_low, self.model.baseline_high) best_e = current_e k = 1 while k < kmax and current_e > max_e: neighbor_s = self.model.get_random_state() # print 'Neighbor: ' + str(neighbor_s) neighbor_e = self.model.normalize_energy(self.model.energy(neighbor_s), self.model.baseline_low, self.model.baseline_high) # print current_e, neighbor_e, tmp if neighbor_e < best_e: best_s, best_e = neighbor_s, neighbor_e output += ' !' if neighbor_e < current_e: current_s, current_e = neighbor_s, neighbor_e output += ' +' elif self.P(current_e, neighbor_e, (1-(float(k)/kmax))**5) > random.random(): current_s, current_e = neighbor_s, neighbor_e output += ' ?' else: output += ' .' if k % 25 == 0: print ', %4d, : %d, %25s' % (k, self.model.denormalize_energy(best_e), output) output = '' k += 1 print print 'Best State Found: ' + str(best_s) print 'Energy At Best State: ' + str(self.model.denormalize_energy(best_e)) print return best_e
class SA: def __init__(self, model = "Schaffer"): self.evals = 0 if model == "Schaffer": self.model = Schaffer() elif model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() elif model == "DTLZ7": self.model = DTLZ7(10, 2) def __repr__(self): return time.strftime("%Y-%m-%d %H:%M:%S") + "\nSimulated Annealing on the Schaffer model\n" def P(self, old_e, new_e, k): return math.e ** ((old_e - new_e) / k) def run(self): kmax = 1000 max_e = -0.1 output = '' current_s = self.model.get_random_state() best_s = current_s current_e = self.model.normalize_energy(self.model.energy(current_s)) best_e = current_e MAX_LIVES = 10 ERA_LENGTH = 100 k = 1 era_List = [] current_era = [] lives = MAX_LIVES while k < kmax and current_e > max_e: neighbor_s = self.model.get_random_state() # print 'Neighbor: ' + str(neighbor_s) neighbor_e = self.model.normalize_energy(self.model.energy(neighbor_s)) # print current_e, neighbor_e, tmp if self.model.type1(best_s, neighbor_s): # print "Neighbor better " + str(best_e) + " " + str(neighbor_e) best_s, best_e = neighbor_s, neighbor_e temp = ' !' if self.model.type1(neighbor_s, current_s): current_s, current_e = neighbor_s, neighbor_e temp = ' +' elif self.P(current_e, neighbor_e, (1-(float(k)/kmax))**5) > random(): current_s, current_e = neighbor_s, neighbor_e temp = ' ?' else: temp = ' .' if temp != ' .': current_era.append(neighbor_s) if len(current_era) == ERA_LENGTH: #print current_era if len(era_List) > 0: increment = self.model.type2(current_era, era_List[-1]) lives += increment if increment <= 0: print "Reducing lives by 1" if lives <= 0: print "Early termination" return best_e era_List.append(current_era) current_era = [] output += temp if k % 25 == 0: print output + "Best state: ", best_e output = '' k += 1 print 'Best State Found: ' + str(best_s) print 'Energy At Best State: ' + str(best_e) return best_e
class SA: def __init__(self, model="Schaffer"): self.evals = 0 if model == "Schaffer": self.model = Schaffer() elif model == "Osyczka": self.model = Osyczka() elif model == "Golinski": self.model = Golinski() elif model == "Kursawe": self.model = Kursawe() def __repr__(self): return time.strftime( "%Y-%m-%d %H:%M:%S" ) + "\nSimulated Annealing on the Schaffer model\n" def P(self, old_e, new_e, k): return math.e**((old_e - new_e) / k) def run(self): kmax = 1000 max_e = -0.1 output = '' current_s = self.model.get_random_state() best_s = current_s current_e = self.model.normalize_energy(self.model.energy(current_s), self.model.baseline_low, self.model.baseline_high) best_e = current_e k = 1 current_era = [] eras = [] lives = 5 ERA_LENGTH = 10 while k < kmax and current_e > max_e: neighbor_s = self.model.get_random_state() # print 'Neighbor: ' + str(neighbor_s) neighbor_e = self.model.normalize_energy( self.model.energy(neighbor_s), self.model.baseline_low, self.model.baseline_high) # print current_e, neighbor_e, tmp if neighbor_e < best_e: best_s, best_e = neighbor_s, neighbor_e output += ' !' if neighbor_e < current_e: current_s, current_e = neighbor_s, neighbor_e output += ' +' elif self.P(current_e, neighbor_e, (1 - (float(k) / kmax))**5) > random.random(): current_s, current_e = neighbor_s, neighbor_e output += ' ?' else: output += ' .' current_era.append( self.model.normalize_energy(current_e, self.model.baseline_low, self.model.baseline_high)) if len(current_era) == ERA_LENGTH and len(eras) > 0: if a12(current_era, eras[-1]) < 0.56: lives -= 1 print "Lives:" + str(lives) + " a12 statistic:" + str( a12(current_era, eras[-1])), else: lives = 5 if len(current_era) == ERA_LENGTH: eras.append(current_era) current_era = [] if lives <= 0: print "Early termination" break if k % 25 == 0: print ', %4d, : %d, %25s' % ( k, self.model.denormalize_energy(best_e), output) output = '' k += 1 print print 'Best State Found: ' + str(best_s) print 'Energy At Best State: ' + str( self.model.denormalize_energy(best_e)) print return best_e