shutil.copy(image_filename_source, image_filename_dest) print(image_filename_dest) print('read csv file, copy subclass10 to dir OK!') #region preprocess 512 # dir_original = '/tmp2/SubClass10/original/' dir_original = dir_dest dir_preprocess512 = '/tmp2/SubClass10/preprocess512/' if DO_PREPROCESS: from LIBS.ImgPreprocess.my_preprocess_dir import do_process_dir do_process_dir(dir_original, dir_preprocess512, image_size=512) print('preprocess OK!') #endregion #region crop optic disc 112 dir_source = dir_preprocess512 dir_dest = '/tmp2/SubClass10_new/Crop_optic_disc_112/' crop_optic_disc_dir(dir_source=dir_source, dir_dest=dir_dest, server_port=21000, mask=True) print('crop optic disc 112 OK!') #endregion
import os, sys, csv import pandas as pd from sklearn.utils import shuffle from LIBS.DataPreprocess import my_data DO_PREPROCESS = True GENERATE_CSV = True from LIBS.ImgPreprocess.my_preprocess_dir import do_process_dir dir_original = '/media/ubuntu/data2/其它数据集/筛查集//original' dir_preprocess = '/media/ubuntu/data2/其它数据集/筛查集/preprocess384' if DO_PREPROCESS: do_process_dir(dir_original, dir_preprocess, image_size=384, add_black_pixel_ratio=0.02) filename_csv = 'screening.csv' current_dir = os.path.abspath(os.path.dirname(__file__)) filename_csv = os.path.join(current_dir, filename_csv) from LIBS.DataPreprocess.my_data import write_csv_dir_nolabel if GENERATE_CSV: write_csv_dir_nolabel(filename_csv, dir_preprocess) print('OK')
filename_csv = os.path.abspath(os.path.join(sys.path[0], "..", 'datafiles', predict_type_name + '.csv')) filename_csv = os.path.abspath(os.path.join(sys.path[0], "..", 'datafiles', 'Subclass_0.3_a.csv')) dir_dest_confusion = os.path.join(DIR_DEST_BASE, predict_type_name, 'confusion_matrix', 'files') dir_dest_predict_dir = os.path.join(DIR_DEST_BASE, predict_type_name, 'dir') pkl_prob = os.path.join(DIR_DEST_BASE, predict_type_name + '_prob.pkl') pkl_confusion_matrix = os.path.join(DIR_DEST_BASE, predict_type_name + '_cf.pkl') if DO_PREPROCESS: from LIBS.ImgPreprocess import my_preprocess_dir image_size = 512 my_preprocess_dir.do_process_dir(dir_original, dir_preprocess, image_size=image_size) if GEN_CSV: if not os.path.exists(os.path.dirname(filename_csv)): os.makedirs(os.path.dirname(filename_csv)) if GET_LABELS_FROM_DIR: dict_mapping = {} for i in range(30): dict_mapping[str(i)] = str(i) my_data.write_csv_based_on_dir(filename_csv, dir_preprocess, dict_mapping) else: my_data.write_csv_dir_nolabel(filename_csv, dir_preprocess)
import sys, os import pandas as pd import csv from LIBS.DataPreprocess.my_data import get_big_classes DO_PREPROCESS = False dir_original = '/media/ubuntu/data1/multi_labels_2919_1_15/' dir_preprocess = '/home/ubuntu/multi_labels_2919_1_15/preprocess384/' if DO_PREPROCESS: from LIBS.ImgPreprocess.my_preprocess_dir import do_process_dir do_process_dir(dir_original, dir_preprocess, image_size=299) def gen_subclass_csv(filename_csv_all, filename_csv_subclass, subclass_no, one_one_class=True): str_subclass_no = str(subclass_no) df = pd.read_csv(filename_csv_all) if os.path.exists(filename_csv_subclass): os.remove(filename_csv_subclass) with open(filename_csv_subclass, 'w', newline='') as csvfile: csv_writer = csv.writer(csvfile, delimiter=',') csv_writer.writerow(['images', 'labels']) for i, row in df.iterrows(): labels = row["labels"]
DO_PREPROCESS = True GEN_CSV = True COMPUTE_DIR_FILES = True DIR_DEST_BASE = '/tmp5/测试集分子类/results' dir_original = '/tmp5/测试集分子类/original' dir_preprocess = '/tmp5/测试集分子类/preprocess384' if DO_PREPROCESS: from LIBS.ImgPreprocess import my_preprocess_dir image_size = 384 my_preprocess_dir.do_process_dir(dir_original, dir_preprocess, image_size=image_size, add_black_pixel_ratio=0.02) print('Preprocess OK') for subclass_type in ['0.1', '0.2', '1', '2', '29']: # for subclass_type in ['0.1', '0.2', '1', '2', '5', '15', '29']: dir_original_subclass = os.path.join(dir_original, subclass_type) dir_preprocess_subclass = os.path.join(dir_preprocess, subclass_type) predict_type_name = 'Subclass' + subclass_type filename_csv = os.path.join(DIR_DEST_BASE, predict_type_name + '.csv') if GEN_CSV: if not os.path.exists(os.path.dirname(filename_csv)):