コード例 #1
0
ファイル: MLP.py プロジェクト: tony32769/Deep-Learning-Models
class MLP:
    def __init__(self, input, label, n_in, n_hidden, n_out, rng=None):

        self.x = input
        self.y = label

        if rng is None:
            rng = numpy.random.RandomState(1234)

        # construct hidden_layer
        self.hidden_layer = HiddenLayer(input=self.x,
                                        n_in=n_in,
                                        n_out=n_hidden,
                                        rng=rng,
                                        activation=tanh)

        # construct log_layer
        self.log_layer = LogisticRegression(input=self.hidden_layer.output,
                                            label=self.y,
                                            n_in=n_hidden,
                                            n_out=n_out)

    def train(self):
        # forward hidden_layer
        layer_input = self.hidden_layer.forward()

        self.log_layer.train(input=layer_input)

        # backward hidden_layer
        self.hidden_layer.backward(prev_layer=self.log_layer)

    def predict(self, x):
        x = self.hidden_layer.output(input=x)
        return self.log_layer.predict(x)
コード例 #2
0
class DBN:
    def __init__(self, input=None, label=None, n_ins=2, hidden_layer_sizes=[3, 3], n_outs=2, rng=None):
        
        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        
        assert self.n_layers > 0


        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()
                
            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)


            # construct rbm_layer
            rbm_layer = RBM(input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layer_sizes[i],
                            W=sigmoid_layer.W,     # W, b are shared
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)


        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(input=self.sigmoid_layers[-1].sample_h_given_v(),
                                            label=self.y,
                                            n_in=hidden_layer_sizes[-1],
                                            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()



    def pretrain(self, lr=0.1, k=1, epochs=100):
        # pre-train layer-wise
        for i in xrange(self.n_layers):
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[i-1].sample_h_given_v(layer_input)
            rbm = self.rbm_layers[i]
            
            for epoch in xrange(epochs):
                rbm.contrastive_divergence(lr=lr, k=k, input=layer_input)


    def finetune(self, lr=0.1, epochs=100):
        layer_input = self.sigmoid_layers[-1].sample_h_given_v()

        # train log_layer
        epoch = 0
        done_looping = False
        while (epoch < epochs) and (not done_looping):
            self.log_layer.train(lr=lr, input=layer_input)
            
            lr *= 0.95
            epoch += 1


    def predict(self, x):
        layer_input = x
        
        for i in xrange(self.n_layers):
            sigmoid_layer = self.sigmoid_layers[i]
            layer_input = sigmoid_layer.output(input=layer_input)

        out = self.log_layer.predict(layer_input)
        return out
コード例 #3
0
class SdA:
    def __init__(self,
                 input=None,
                 label=None,
                 n_ins=2,
                 hidden_layer_sizes=[3, 3],
                 n_outs=2,
                 rng=None):

        self.x = input
        self.y = label

        self.sigmoid_layers = []
        self.dA_layers = []
        self.n_layers = len(hidden_layer_sizes)  # = len(self.rbm_layers)

        if rng is None:
            rng = numpy.random.RandomState(1234)

        assert self.n_layers > 0

        # construct multi-layer
        for i in xrange(self.n_layers):
            # layer_size
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layer_sizes[i - 1]

            # layer_input
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].sample_h_given_v()

            # construct sigmoid_layer
            sigmoid_layer = HiddenLayer(input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layer_sizes[i],
                                        rng=rng,
                                        activation=sigmoid)
            self.sigmoid_layers.append(sigmoid_layer)

            # construct dA_layers
            dA_layer = dA(input=layer_input,
                          n_visible=input_size,
                          n_hidden=hidden_layer_sizes[i],
                          W=sigmoid_layer.W,
                          hbias=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)

        # layer for output using Logistic Regression
        self.log_layer = LogisticRegression(
            input=self.sigmoid_layers[-1].sample_h_given_v(),
            label=self.y,
            n_in=hidden_layer_sizes[-1],
            n_out=n_outs)

        # finetune cost: the negative log likelihood of the logistic regression layer
        self.finetune_cost = self.log_layer.negative_log_likelihood()

    def pretrain(self, lr=0.1, corruption_level=0.3, epochs=100):
        for i in xrange(self.n_layers):
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[i - 1].sample_h_given_v(
                    layer_input)

            da = self.dA_layers[i]

            for epoch in xrange(epochs):
                da.train(lr=lr,
                         corruption_level=corruption_level,
                         input=layer_input)

    def finetune(self, lr=0.1, epochs=100):
        layer_input = self.sigmoid_layers[-1].sample_h_given_v()

        # train log_layer
        epoch = 0

        while epoch < epochs:
            self.log_layer.train(lr=lr, input=layer_input)
            lr *= 0.95
            epoch += 1

    def predict(self, x):
        layer_input = x

        for i in xrange(self.n_layers):
            sigmoid_layer = self.sigmoid_layers[i]
            layer_input = sigmoid_layer.output(input=layer_input)

        return self.log_layer.predict(layer_input)
コード例 #4
0
ファイル: CNN.py プロジェクト: tony32769/Deep-Learning-Models
class CNN:
    def __init__(self,
                 N,
                 label,
                 n_hidden,
                 n_out,
                 image_size,
                 channel,
                 n_kernels,
                 kernel_sizes,
                 pool_sizes,
                 rng=None,
                 activation=ReLU):

        if rng is None:
            rng = numpy.random.RandomState(1234)

        self.N = N
        self.n_hidden = n_hidden

        self.n_kernels = n_kernels

        self.pool_sizes = pool_sizes

        self.conv_layers = []
        self.conv_sizes = []

        # construct 1st conv_layer
        conv_layer0 = ConvPoolLayer(N, image_size, channel, n_kernels[0],
                                    kernel_sizes[0], pool_sizes[0], rng,
                                    activation)
        self.conv_layers.append(conv_layer0)

        conv_size = [
            (image_size[0] - kernel_sizes[0][0] + 1) / pool_sizes[0][0],
            (image_size[1] - kernel_sizes[0][1] + 1) / pool_sizes[0][1]
        ]
        self.conv_sizes.append(conv_size)

        # construct 2nd conv_layer
        conv_layer1 = ConvPoolLayer(N, conv_size, n_kernels[0], n_kernels[1],
                                    kernel_sizes[1], pool_sizes[1], rng,
                                    activation)
        self.conv_layers.append(conv_layer1)

        conv_size = [
            (conv_size[0] - kernel_sizes[1][0] + 1) / pool_sizes[1][0],
            (conv_size[1] - kernel_sizes[1][0] + 1) / pool_sizes[1][1]
        ]
        self.conv_sizes.append(conv_size)

        # construct hidden_layer
        self.hidden_layer = HiddenLayer(
            None, n_kernels[-1] * conv_size[0] * conv_size[1], n_hidden, None,
            None, rng, activation)

        # construct log_layer
        self.log_layer = LogisticRegression(None, label, n_hidden, n_out)

    # def train(self, epochs, learning_rate, input=None):
    def train(self, epochs, learning_rate, input, test_input=None):

        for epoch in xrange(epochs):

            if (epoch + 1) % 5 == 0:
                print 'iter = %d/%d' % (epoch + 1, epochs)

                print
                print '------------------'
                print 'TEST PROCESSING...'

                print self.predict(test_input)
                print '------------------'
                print

            # forward first conv layer
            pooled_X = self.conv_layers[0].forward(input=input)

            # forward second conv layer
            pooled_X = self.conv_layers[1].forward(input=pooled_X)

            # flatten input
            layer_input = self.flatten(pooled_X)

            # forward hidden layer
            layer_input = self.hidden_layer.forward(input=layer_input)

            # forward & backward logistic layer
            self.log_layer.train(lr=learning_rate, input=layer_input)

            # backward hidden layer
            self.hidden_layer.backward(prev_layer=self.log_layer,
                                       lr=learning_rate)

            flatten_size = self.n_kernels[-1] * self.conv_sizes[-1][
                0] * self.conv_sizes[-1][1]
            delta_flatten = numpy.zeros((self.N, flatten_size))

            for n in xrange(self.N):
                for i in xrange(flatten_size):

                    for j in xrange(self.n_hidden):
                        delta_flatten[n][i] += self.hidden_layer.W[i][
                            j] * self.hidden_layer.d_y[n][j]

            # unflatten delta
            delta = numpy.zeros(
                (len(delta_flatten), self.n_kernels[-1],
                 self.conv_sizes[-1][0], self.conv_sizes[-1][1]))

            for n in xrange(len(delta)):
                index = 0
                for k in xrange(self.n_kernels[-1]):
                    for i in xrange(self.conv_sizes[-1][0]):
                        for j in xrange(self.conv_sizes[-1][1]):
                            delta[n][k][i][j] = delta_flatten[n][index]
                            index += 1

            # backward second conv layer
            delta = self.conv_layers[1].backward(delta, self.conv_sizes[1],
                                                 learning_rate)

            # backward first conv layer
            self.conv_layers[0].backward(delta, self.conv_sizes[0],
                                         learning_rate)

    def flatten(self, input):

        flatten_size = self.n_kernels[-1] * self.conv_sizes[-1][
            0] * self.conv_sizes[-1][1]
        flattened_input = numpy.zeros((len(input), flatten_size))

        for n in xrange(len(flattened_input)):
            index = 0

            for k in xrange(self.n_kernels[-1]):
                for i in xrange(self.conv_sizes[-1][0]):
                    for j in xrange(self.conv_sizes[-1][1]):
                        flattened_input[n][index] = input[n][k][i][j]
                        index += 1

        # print flattened_input

        return flattened_input

    def predict(self, x):

        pooled_X = self.conv_layers[0].forward(input=x)

        pooled_X = self.conv_layers[1].forward(input=pooled_X)

        layer_input = self.flatten(pooled_X)

        x = self.hidden_layer.output(input=layer_input)

        return self.log_layer.predict(x)