コード例 #1
0
    rdwords.sort(key = lambda x : x[1], reverse = True)
    outcnt = 0
    for i in range(len(rdwords)):
        if owords[rdwords[i][0]] > 20:
            print(rdwords[i], owords[rdwords[i][0]])
            outcnt += 1
        if outcnt > 20:
            break;
    avelenth = float(total_lenth) / float(len(test_data))
    avedis = float(total_dis) / float(len(test_data))
    #print "average length", avelenth
    #print "average distilled length", avedis
    return float(acc) / len(test_data)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config = config) as sess:
    #model
    critic = LSTM_CriticNetwork(sess, args.dim, args.optimizer, args.lr, args.tau, args.grained, args.maxlenth, args.dropout, word_vector) 
    actor = ActorNetwork(sess, args.dim, args.optimizer, args.lr, args.tau)
    #print variables
    for item in tf.trainable_variables():
        print (item.name, item.get_shape())
    
    saver = tf.train.Saver()
    
    saver.restore(sess, "checkpoints/best816")

    print(test(sess, actor, critic, dev_data))

コード例 #2
0
ファイル: main.py プロジェクト: llesky/csi5386
        else:
            actions, action_pos = sampling_random(lenth, paction)
        
        if len(actions) != args.maxlenth:
            print(inputs)
        #predict
        out = critic.predict_target([inputs], [actions], [action_pos], [lenth], [len(action_pos)])
        if np.argmax(out) == np.argmax(solution):
            acc += 1
    return float(acc) / len(test_data)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config = config) as sess:
    #model
    critic = LSTM_CriticNetwork(sess, args.dim, args.optimizer, args.lr, args.tau, args.grained, args.attention, args.maxlenth, args.dropout, word_vector) 
    actor = ActorNetwork(sess, args.dim, args.optimizer, args.lr, args.tau, critic.get_num_trainable_vars())
    state_size = critic.state_size

    #print variables
    for item in tf.trainable_variables():
        print((item.name, item.get_shape()))
    
    saver = tf.train.Saver()
    
    #LSTM pretrain
    if args.RLpretrain != '':
        pass
    elif args.LSTMpretrain == '':
        sess.run(tf.global_variables_initializer())
        for i in range(0,2):