コード例 #1
0
def ellipse_test(capacity):
    from matplotlib.patches import Ellipse
    _, sp = plt.subplots(1, 3, figsize=(16, 6))
    for cor, subplot in zip([0, 0.5, 0.9], sp):
        dots = np.random.multivariate_normal((0, 0), [[1, cor], [cor, 1]],
                                             capacity).T
        vx = nc.dispersion_exp(dots[0])
        vy = nc.dispersion_exp(dots[1])
        angle = np.arctan(2 * np.sqrt(vx) * np.sqrt(vy) * cor / (vx - vy)) / 2
        w = 5 * np.sqrt(vx * (np.cos(angle))**2 + cor * np.sqrt(vx) *
                        np.sqrt(vy) * np.sin(2 * angle) + vy *
                        (np.sin(angle))**2)
        h = 5 * np.sqrt(vx * (np.sin(angle))**2 - cor * np.sqrt(vx) *
                        np.sqrt(vy) * np.sin(2 * angle) + vy *
                        (np.cos(angle))**2)
        ell = Ellipse(xy=(nc.sample_mean(dots[0]), nc.sample_mean(dots[1])),
                      width=w,
                      height=h,
                      angle=np.rad2deg(angle))
        draw_ellipse("normal distribution %s = %.1f" % (r'$\rho$', cor), ell,
                     dots, subplot)
    plt.show()
コード例 #2
0
def complex_dist_test(capacity):
    def f(cap):        return 0.9 * np.random.multivariate_normal((0, 0), [[1, 0.9], [0.9, 1]], cap).T + \
                0.1 * np.random.multivariate_normal((0, 0), [[100, -0.9], [-0.9, 100]], cap).T

    data = np.array([[
        c_cor(f(capacity))
        for c_cor in [scc.pearson, scc.spearman, scc.selective_quadrant]
    ] for _ in range(1000)]).T
    cell_text = [
        list(
            map(lambda x: "%.4f" % x, [
                nc.sample_mean(data[i]),
                nc.sample_mean(list(map(lambda x: x**2, data[i]))),
                nc.dispersion_exp(data[i])
            ])) for i in range(3)
    ]
    draw_table("complex normal distribution n = %i" % capacity,
               np.array(cell_text).T)
コード例 #3
0
def simple_dist_test(capacity):
    for cov in [0, 0.5, 0.9]:
        data = []
        for _ in range(1000):
            sample = np.random.multivariate_normal(
                (0, 0), [[1, cov], [cov, 1]], capacity).T
            data += [[
                c_cor(sample) for c_cor in
                [scc.pearson, scc.spearman, scc.selective_quadrant]
            ]]
        data = np.array(data).T
        cell_text = [
            list(
                map(lambda x: "%.4f" % x, [
                    nc.sample_mean(data[i]),
                    nc.sample_mean(list(map(lambda x: x**2, data[i]))),
                    nc.dispersion_exp(data[i])
                ])) for i in range(3)
        ]
        draw_table("normal distribution n = %i, p = %.2f" % (capacity, cov),
                   np.array(cell_text).T)
コード例 #4
0
 def pearson(samples):
     ex = nc.sample_mean(samples[0])
     ey = nc.sample_mean(samples[1])
     sdx = np.sqrt(nc.dispersion_exp(samples[0]))
     sdy = np.sqrt(nc.dispersion_exp(samples[1]))
     return (nc.sample_mean(np.array(samples[0])*np.array(samples[1])) - ex * ey) / (sdx * sdy)
コード例 #5
0
    plt.plot(dots, nl, color='red')
    plt.title("%s, capacity:%s" % ("normal distribution", sum(n_list)))
    plt.ylabel("fx")
    plt.xlabel("X")
    plt.grid()
    plt.legend(('теоретические частоты', 'реальные частоты'))
    plt.show()


if __name__ == "__main__":
    k = 7
    delta = 0.5
    for n in [10, 100]:
        x_i = sorted(dist.normal(n))
        m0 = nc.sample_mean(x_i)
        d = nc.dispersion_exp(x_i)
        print("%.2f %.2f" % (m0, d))
        d_i = [[-np.inf,
                m0 - delta * 2.5], [m0 - delta * 2.5, m0 - delta * 1.5],
               [m0 - delta * 1.5, m0 - delta * 0.5],
               [m0 - delta * 0.5, m0 + delta * 0.5],
               [m0 + delta * 0.5, m0 + delta * 1.5],
               [m0 + delta * 1.5, m0 + delta * 2.5],
               [m0 + delta * 2.5, np.inf]]
        n_i = [0] * k
        for x in x_i:
            for i in range(k):
                if d_i[i][0] < x <= d_i[i][1]:
                    n_i[i] += 1
        p_i = [integrate.quad(den.normal, i[0], i[1])[0] for i in d_i]
        npi = n * np.array(p_i)
コード例 #6
0
import scipy.stats as st
import numpy as np
from Lab1.distribution import distribution as d
from Lab2.num_char import numerical_characteristics as nc

if __name__ == "__main__":
    alpha = 0.05
    for n in [20, 100]:
        print("=========%i==========" % n)
        x = d.normal(n)
        m = nc.sample_mean(x)
        s = np.sqrt(nc.dispersion_exp(x))
        print("m: %.2f, %.2f" %
              (m - s *
               (st.t.ppf(1 - alpha / 2, n - 1)) / np.sqrt(n - 1), m + s *
               (st.t.ppf(1 - alpha / 2, n - 1)) / np.sqrt(n - 1)))
        print("sigma: %.2f, %.2f" %
              (s * np.sqrt(n) / np.sqrt(st.chi2.ppf(1 - alpha / 2, n - 1)),
               s * np.sqrt(n) / np.sqrt(st.chi2.ppf(alpha / 2, n - 1))))
        print("m asymptotic :%.2f, %.2f" %
              (m - st.norm.ppf(1 - alpha / 2) / np.sqrt(n),
               m + st.norm.ppf(1 - alpha / 2) / np.sqrt(n)))
        e = (sum(list(map(lambda el: (el - m)**4, x))) / n) / s**4 - 3
        print("sigma asymptotic: %.2f, %.2f" %
              (s / np.sqrt(1 + st.norm.ppf(1 - alpha / 2) * np.sqrt(
                  (e + 2) / n)), s /
               np.sqrt(1 - st.norm.ppf(1 - alpha / 2) * np.sqrt((e + 2) / n))))
コード例 #7
0
from Lab1.distribution import distribution as d
from Lab2.num_char import numerical_characteristics as nc

if __name__ == "__main__":
    for dist in [d.uniform, d.poisson, d.laplace, d.normal, d.cauchy]:
        print(dist.__name__)
        for capacity in [10, 100, 1000]:
            for num_char in [
                    nc.sample_mean, nc.median, nc.halfsum_extreme,
                    nc.halfsum_quartile, nc.truncated_mean
            ]:
                print(num_char.__name__ + "  cap: " + str(capacity))
                data = [num_char(sorted(dist(capacity))) for _ in range(1000)]
                print("%.6f" % nc.sample_mean(data))
                print("%.6f" % nc.dispersion_exp(data))
                print('==================================')