コード例 #1
0
    def label_encode_engineer(self):
        # must be called AFTER sg_ordinals
        lce = LabelCountEncoder()
        self.label_df = self.ord_df.copy()

        for c in self.train().columns:
            if self.label_df[c].dtype == 'object':
                lce = LabelCountEncoder()
                self.label_df[c] = lce.fit_transform(self.label_df[c])
コード例 #2
0
ファイル: house.py プロジェクト: sunanda629/Final_MLProject
 def label_encode_engineer(self):
     lce = LabelCountEncoder()
     for c in self.all.columns:
         if self.all[c].dtype == 'object':
             lce = LabelCountEncoder()
             self.all[c] = lce.fit_transform(self.all[c])
コード例 #3
0
dfS=df[['SalePrice','Heating','HeatingQC', 'CentralAir', 'Electrical', '1stFlrSF', \
'2ndFlrSF', \
'LowQualFinSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', \
'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'KitchenQual', \
'TotRmsAbvGrd', 'Functional', 'Fireplaces', 'FireplaceQu']]

dfS[['GrLivArea', '1stFlrSF']].corr()
dfS.GrLivArea.value_counts()
dfS[['GrLivArea', '2ndFlrSF']].corr()

dfS.BsmtHalfBath.value_counts()
# Wonder if the Bsmt bathrooms parameters covary with BsmtCond or BsmtFinType1

# %% Heating Variables
from LabelClass import LabelCountEncoder
lce = LabelCountEncoder()
dfS['Heating'] = lce.fit_transform(dfS['Heating'])

dfS[['HeatingQC', 'Heating']].corr()
df.HeatingQC.value_counts()
df.Heating.value_counts()

# %%

df.loc[df.Functional == 'Maj2']
dfS.loc[dfS.Functional == 3]
dfS['Kitchen*Quality'] = dfS.KitchenAbvGr * dfS.KitchenQual

functional_dic = {
    'Typ': 8,
    'Min1': 7,