コード例 #1
0
    def __prediction(self, extractor: AppearanceExtractor, classifier: Classifier, predict_season: int) -> \
            Dict[Player, MultiLayerResult]:
        """ Execute the prediction phase of the Appearance Layer.

        Arguments:
            extractor (AppearanceExtractor): The extractor which delivers the prediction data.
            classifier (Classifier): A classifier which classifies players as either Mol or non-Mol based on how often
                they appear.
            predict_season (int): For which season we make the prediction.

        Returns:
            A dictionary with as key the players that participated in the prediction season and as value a
            MultiLayerResult which contains the predictions.
        """
        all_predictions = dict()
        predict_data = extractor.get_predict_data()
        if not predict_data:
            return EmptyMultiLayer().predict(predict_season, 0, set())

        for player in get_players_in_season(predict_season):
            if player in predict_data:
                predictions = []
                for data in predict_data[player]:
                    predictions.append(classifier.predict_proba([data]))
                all_predictions[player] = MultiLayerResult(np.array(predictions), False)
            else:
                all_predictions[player] = MultiLayerResult(np.array([]), True)

        return all_predictions
コード例 #2
0
    def predict(self, predict_season: int, latest_episode: int, train_seasons: Set[int]) -> Dict[Player, np.array]:
        train_seasons = {season for season in train_seasons if season >= self.__first_season}
        max_episode = self.__latest_available_episode(predict_season, latest_episode)
        if max_episode == 0 or predict_season < self.__first_season:
            return EmptyMultiLayer().predict(predict_season, latest_episode, train_seasons)

        extractor = AppearanceExtractor(predict_season, max_episode, train_seasons, self.__aug_num_cuts,
                                        self.__aug_min_cuts_on)
        classifier = self.__training(extractor)
        return self.__prediction(extractor, classifier, predict_season)
コード例 #3
0
    def predict(self, predict_season: int, latest_episode: int,
                train_seasons: Set[int]) -> Dict[Player, MultiLayerResult]:
        available_seasons = MONEY_DATA.keys()
        train_seasons = train_seasons.intersection(available_seasons)
        if predict_season not in available_seasons:
            return EmptyMultiLayer().predict(predict_season, latest_episode,
                                             train_seasons)

        extractor = MoneyExtractor(predict_season, latest_episode,
                                   train_seasons, self.__pca_explain,
                                   self.__spline_clusters,
                                   self.__num_other_money_quantiles,
                                   self.__random_generator)
        classifier = self.__training(extractor)
        predict_data = extractor.get_predict_data()
        if not predict_data:
            return EmptyMultiLayer().predict(predict_season, latest_episode,
                                             train_seasons)

        return self.__predict(predict_season, latest_episode, predict_data,
                              classifier)
コード例 #4
0
ファイル: ExamDropLayer.py プロジェクト: c1ennis/Moldel
    def predict(self, predict_season: int, latest_episode: int,
                train_seasons: Set[int]) -> Dict[Player, MultiLayerResult]:
        available_seasons = EXAM_DATA.keys()
        train_seasons = train_seasons.intersection(available_seasons)
        if predict_season not in available_seasons:
            return EmptyMultiLayer().predict(predict_season, latest_episode,
                                             train_seasons)

        extractor = ExamDropExtractor(predict_season, latest_episode,
                                      train_seasons,
                                      self.__anova_f_significance,
                                      self.__pca_explain, self.__max_splits)
        classifier = self.__training(extractor)
        predict_data = extractor.get_predict_data()
        if not predict_data:
            alive_players = EXAM_DATA[predict_season].get_alive_players(
                latest_episode)
            return EmptyMultiLayer(alive_players).predict(
                predict_season, latest_episode, train_seasons)

        return self.__predict(predict_season, latest_episode, predict_data,
                              classifier)
コード例 #5
0
    def predict(self, predict_season: int, latest_episode: int,
                train_seasons: Set[int]) -> Dict[Player, MultiLayerResult]:
        available_seasons = EXAM_DATA.keys()
        train_seasons = train_seasons.intersection(available_seasons)
        if predict_season not in available_seasons:
            return EmptyMultiLayer().predict(predict_season, latest_episode,
                                             train_seasons)

        extractor = ExamDropExtractor(predict_season, latest_episode,
                                      train_seasons, self.__min_cluster_size,
                                      self.__spline_curves,
                                      self.__random_generator)
        in_classifier, out_classifier = self.__training(extractor)
        predict_data = extractor.get_predict_data()
        if not predict_data:
            alive_players = EXAM_DATA[predict_season].get_alive_players(
                latest_episode)
            return EmptyMultiLayer(alive_players).predict(
                predict_season, latest_episode, train_seasons)

        return self.__predict(predict_season, latest_episode, predict_data,
                              in_classifier, out_classifier)
コード例 #6
0
    def __prediction(self, extractor: AppearanceExtractor,
                     non_mol_kde: gaussian_kde, mol_kde: gaussian_kde,
                     predict_season: int) -> Dict[Player, MultiLayerResult]:
        """ Execute the prediction phase of the Appearance Layer.

        Arguments:
            extractor (AppearanceExtractor): The extractor which delivers the prediction data.
            non_mol_kde (gaussian_kde): The Kernel Density Estimator for non-Mol appearance values.
            mol_kde (gaussian_kde): The Kernel Density Estimator for Mol appearance values.
            predict_season (int): For which season we make the prediction.

        Returns:
            A dictionary with as key the players that participated in the prediction season and as value a
            MultiLayerResult which contains the predictions.
        """
        all_predictions = dict()
        predict_data = extractor.get_predict_data()
        if not predict_data:
            return EmptyMultiLayer().predict(predict_season, 0, set())

        min_value = self.get_boundary(non_mol_kde, mol_kde, len(predict_data),
                                      self.__cdf_cutoff / 2, self.MIN_VALUE,
                                      self.MAX_VALUE)
        max_value = self.get_boundary(non_mol_kde, mol_kde, len(predict_data),
                                      1 - self.__cdf_cutoff / 2,
                                      self.MIN_VALUE, self.MAX_VALUE)
        for player in get_players_in_season(predict_season):
            if player in predict_data:
                predictions = []
                for data in predict_data[player]:
                    data = min(max(data, min_value), max_value)
                    non_mol_likelihood = non_mol_kde.pdf(data)[0] * (
                        len(predict_data) - 1) / len(predict_data)
                    mol_likelihood = mol_kde.pdf(data)[0] / len(predict_data)
                    likelihood = mol_likelihood / (non_mol_likelihood +
                                                   mol_likelihood)
                    predictions.append(likelihood)
                all_predictions[player] = MultiLayerResult(
                    np.array(predictions), False)
            else:
                all_predictions[player] = MultiLayerResult(np.array([]), True)

        return all_predictions