def __init__(self, in_channels, out_channels, stride=1, base_width=64): super().__init__() width = int(out_channels * (base_width / 64.)) self.residual_function = nn.Sequential( layers.Conv2d(in_channels, width, kernel_size=1, bias=False), layers.BatchNorm2d(width), nn.ReLU(inplace=True), layers.Conv2d(width, width, stride=stride, kernel_size=3, padding=1, bias=False), layers.BatchNorm2d(width), nn.ReLU(inplace=True), layers.Conv2d(width, out_channels * BottleNeck.expansion, kernel_size=1, bias=False), layers.BatchNorm2d(out_channels * BottleNeck.expansion), ) self.shortcut = layers.Identity2d(in_channels) if stride != 1 or in_channels != out_channels * BottleNeck.expansion: self.shortcut = nn.Sequential( layers.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False), layers.BatchNorm2d(out_channels * BottleNeck.expansion))
def __init__(self, f_in: int, f_out: int, downsample=False): super(Block, self).__init__() stride = 2 if downsample else 1 self.conv1 = layers.Conv2d(f_in, f_out, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = layers.BatchNorm2d(f_out) self.conv2 = layers.Conv2d(f_out, f_out, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = layers.BatchNorm2d(f_out) # No parameters for shortcut connections. if downsample or f_in != f_out: self.shortcut = nn.Sequential( layers.Conv2d(f_in, f_out, kernel_size=1, stride=2, bias=False), layers.BatchNorm2d(f_out)) else: self.shortcut = layers.Identity2d(f_in)
def __init__(self, in_channels, out_channels, stride=1, base_width=64): super().__init__() #residual function self.residual_function = nn.Sequential( layers.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), layers.BatchNorm2d(out_channels), nn.ReLU(inplace=True), layers.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False), layers.BatchNorm2d(out_channels * BasicBlock.expansion)) #shortcut self.shortcut = layers.Identity2d(in_channels) #the shortcut output dimension is not the same with residual function #use 1*1 convolution to match the dimension if stride != 1 or in_channels != BasicBlock.expansion * out_channels: self.shortcut = nn.Sequential( layers.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False), layers.BatchNorm2d(out_channels * BasicBlock.expansion))
def __init__(self, in_channels, out_channels, stride=1, base_width=64, batch_norm=True): super().__init__() self.batch_norm = batch_norm # residual function layer_list = [ layers.Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False, ), ] if self.batch_norm: layer_list.append(layers.BatchNorm2d(out_channels)) layer_list += [ nn.ReLU(inplace=True), layers.Conv2d( out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False, ), ] if self.batch_norm: layer_list.append( layers.BatchNorm2d(out_channels * BasicBlock.expansion)) self.residual_function = nn.Sequential(*layer_list) # shortcut self.shortcut = layers.Identity2d(in_channels) # the shortcut output dimension is not the same with residual function # use 1*1 convolution to match the dimension if stride != 1 or in_channels != BasicBlock.expansion * out_channels: layer_list = [ layers.Conv2d( in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False, ) ] if self.batch_norm: layer_list.append( layers.BatchNorm2d(out_channels * BasicBlock.expansion)) self.shortcut = nn.Sequential(*layer_list)
def __init__(self, in_channels, out_channels, stride=1, base_width=64, batch_norm=True): super().__init__() self.batch_norm = batch_norm width = int(out_channels * (base_width / 64.0)) layer_list = [ layers.Conv2d(in_channels, width, kernel_size=1, bias=False), ] if self.batch_norm: layer_list.append(layers.BatchNorm2d(width)) layer_list += [ nn.ReLU(inplace=True), layers.Conv2d(width, width, stride=stride, kernel_size=3, padding=1, bias=False), ] if self.batch_norm: layer_list.append(layers.BatchNorm2d(width)) layer_list += [ nn.ReLU(inplace=True), layers.Conv2d(width, out_channels * BottleNeck.expansion, kernel_size=1, bias=False), ] if self.batch_norm: layer_list.append( layers.BatchNorm2d(out_channels * BottleNeck.expansion)) self.residual_function = nn.Sequential(*layer_list) self.shortcut = layers.Identity2d(in_channels) if stride != 1 or in_channels != out_channels * BottleNeck.expansion: layer_list = [ layers.Conv2d( in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False, ), ] if self.batch_norm: layer_list.append( layers.BatchNorm2d(out_channels * BottleNeck.expansion)) self.shortcut = nn.Sequential(*layer_list)
def __init__(self, plan, num_classes, dense_classifier): super(ResNet, self).__init__() # Initial convolution. current_filters = plan[0][0] self.conv = layers.Conv2d( 3, current_filters, kernel_size=3, stride=1, padding=1, bias=False ) self.bn = layers.BatchNorm2d(current_filters) # The subsequent blocks of the ResNet. blocks = [] for segment_index, (filters, num_blocks) in enumerate(plan): for block_index in range(num_blocks): downsample = segment_index > 0 and block_index == 0 blocks.append(Block(current_filters, filters, downsample)) current_filters = filters self.blocks = nn.Sequential(*blocks) self.fc = layers.Linear(plan[-1][0], num_classes) if dense_classifier: self.fc = nn.Linear(plan[-1][0], num_classes) self._initialize_weights()
def __init__(self, in_filters, out_filters): super(ConvBNModule, self).__init__() self.conv = layers.Conv2d(in_filters, out_filters, kernel_size=3, padding=1) self.bn = layers.BatchNorm2d(out_filters)
def __init__(self, block, num_block, base_width, num_classes=200, dense_classifier=False): super().__init__() self.in_channels = 64 self.conv1 = nn.Sequential( layers.Conv2d(3, 64, kernel_size=3, padding=1, bias=False), layers.BatchNorm2d(64), nn.ReLU(inplace=True)) #we use a different inputsize than the original paper #so conv2_x's stride is 1 self.conv2_x = self._make_layer(block, 64, num_block[0], 1, base_width) self.conv3_x = self._make_layer(block, 128, num_block[1], 2, base_width) self.conv4_x = self._make_layer(block, 256, num_block[2], 2, base_width) self.conv5_x = self._make_layer(block, 512, num_block[3], 2, base_width) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = layers.Linear(512 * block.expansion, num_classes) if dense_classifier: self.fc = nn.Linear(512 * block.expansion, num_classes) self._initialize_weights()
def make_layers(cfg, batch_norm=False): layer_list = [] in_channels = 3 for v in cfg: if v == 'M': layer_list += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = layers.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layer_list += [ conv2d, layers.BatchNorm2d(v), nn.ReLU(inplace=True) ] else: layer_list += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layer_list)
def make_layers(cfg, batch_norm=False): layer_list = [] input_channel = 3 for l in cfg: if l == 'M': layer_list += [nn.MaxPool2d(kernel_size=2, stride=2)] continue layer_list += [ layers.Conv2d(input_channel, l, kernel_size=3, padding=1) ] if batch_norm: layer_list += [layers.BatchNorm2d(l)] layer_list += [nn.ReLU(inplace=True)] input_channel = l return nn.Sequential(*layer_list)