コード例 #1
0
def up_convolution(layer_input, output_shape, in_channels, dropout_keep_prob):
    with tf.variable_scope('up_convolution'):
        x = deconvolution_3d(layer_input,
                             [2, 2, 2, in_channels // 2, in_channels],
                             output_shape, [1, 2, 2, 2, 1])
        x = prelu(x)
        x = tf.nn.dropout(x, dropout_keep_prob)
        return x
コード例 #2
0
def _up_convolution(input_, output_shape, in_channels):
    """

    :param input_: data shape [batch, depth, height, width, in_channels]
    :param output_shape: must match input dimensions [batch, depth, height, width, in_channels]
    :param in_channels:
    :return:
    """
    with tf.variable_scope('up_convolution'):
        return deconvolution_3d(input_, [2, 2, 2, in_channels, in_channels],
                                output_shape, [1, 2, 2, 2, 1])
コード例 #3
0
def _up_convolution(layer_input, output_shape, in_channels):
    with tf.variable_scope('up_convolution'):
        return tf.nn.relu(
            deconvolution_3d(layer_input,
                             [2, 2, 2, in_channels // 2, in_channels],
                             output_shape, [1, 2, 2, 2, 1]))