def up_convolution(layer_input, output_shape, in_channels, dropout_keep_prob): with tf.variable_scope('up_convolution'): x = deconvolution_3d(layer_input, [2, 2, 2, in_channels // 2, in_channels], output_shape, [1, 2, 2, 2, 1]) x = prelu(x) x = tf.nn.dropout(x, dropout_keep_prob) return x
def _up_convolution(input_, output_shape, in_channels): """ :param input_: data shape [batch, depth, height, width, in_channels] :param output_shape: must match input dimensions [batch, depth, height, width, in_channels] :param in_channels: :return: """ with tf.variable_scope('up_convolution'): return deconvolution_3d(input_, [2, 2, 2, in_channels, in_channels], output_shape, [1, 2, 2, 2, 1])
def _up_convolution(layer_input, output_shape, in_channels): with tf.variable_scope('up_convolution'): return tf.nn.relu( deconvolution_3d(layer_input, [2, 2, 2, in_channels // 2, in_channels], output_shape, [1, 2, 2, 2, 1]))