def run(): """ <Description> Args: param1: This is the first param. Returns: This is a description of what is returned. """ model, descr = WLC.Hao_PEGModel, "Hao_Parameters", fig = PlotUtilities.figure((4, 6)) plot_inf = WLC._make_plot_inf(ext_grid=np.linspace(0, 30, num=3000), read_functor=WLC.read_haos_data, base="../../FigData/") make_model_plot(plot_inf=plot_inf, title=descr) PlotUtilities.savefig(fig, "PEG_{:s}.png".format(descr)) # make sure what we have matches Hao. fig = PlotUtilities.figure((2.5, 4)) make_comparison_plot() plt.xlim([0, 35]) plt.ylim([0, 300]) PlotUtilities.legend(frameon=True) PlotUtilities.savefig(fig, "out_compare.png") pass
def run(): input_dir = "../../../../Data/FECs180307/" out_dir = "./" q_offset_nm = 100 q_interp, energy_list_arr, _ = FigureUtil.\ _read_energy_list_and_q_interp(input_dir, q_offset=q_offset_nm, min_fecs=9) # read in some example data base_dir_BR = input_dir + "BR+Retinal/" names_BR = ["/BR+Retinal/3000nms/170503FEC/landscape_"] PEG600 = FigureUtil._read_samples(base_dir_BR,names_BR)[0] # read in the FECs fecs = FigureUtil._snapsnot(PEG600.base_dir, step=Pipeline.Step.REDUCED).fec_list args_mean = (energy_list_arr, q_interp) mean_A = mean_A_jarzynski(*args_mean) mean_G = mean_G_iwt(*args_mean) mean_F_from_dot = mean_A_dot_iwt(*args_mean)[0] ex = fecs[0] q = q_interp * 1e-9 # xxx offset q and z... probably a little off! z = ex.ZFunc(ex) + q[0] k = ex.SpringConstant beta = ex.Beta A = mean_A[0] G = mean_G[0] n_iters = 5000 force =True kw_lr = dict(G0=G, A=A, q=q, z=z, k=k, beta=beta,n_iters=n_iters) lr = CheckpointUtilities.getCheckpoint("./lr_deconv.pkl", _deconvoled_lr,force,**kw_lr) diff_kT = np.array(lr.mean_diffs) * beta min_idx = np.argmin(diff_kT) idx_search = np.logspace(start=3,stop=np.floor(np.log2(min_idx)), endpoint=True,num=10,base=2) idx_to_use = [int(i) for i in idx_search] # fit a spline to the converged G to get the mean restoring force fig = PlotUtilities.figure((4,6)) xlim = [min(q_interp)-5, max(q_interp)] fmt_kw = dict(xlim=xlim,ylim=[None,None]) ax1 = plt.subplot(3,1,1) plt.plot(diff_kT) plt.axvline(min_idx) FigureUtil._plot_fmt(ax1,is_bottom=True,xlabel="iter #", ylabel="diff G (kT)",xlim=[None,None],ylim=[None,None]) ax2 = plt.subplot(3,1,2) plt.plot(q_interp,lr._G0_initial_lr.G0_kT,color='b',linewidth=3) plt.plot(q_interp,lr.G0_kT,color='r',linewidth=3) FigureUtil._plot_fmt(ax2,is_bottom=False,ylabel="G (kT)",**fmt_kw) ax1 = plt.subplot(3,1,3) FigureUtil._plot_fec_list(fecs, xlim, ylim=[None,None]) for i in idx_to_use: _plot_f_at_iter_idx(lr, i) _plot_f_at_iter_idx(lr, 0,label="F from G0",linewidth=4) plt.plot(q_interp,mean_F_from_dot*1e12,label="F from A_z_dot",linewidth=2) # also plot the force we expect from the original A_z_dot FigureUtil._plot_fmt(ax1,is_bottom=True,xlim=xlim,ylim=[None,None]) PlotUtilities.legend() PlotUtilities.savefig(fig,"FigureS_A_z.png") pass
def _G0_plot(plot_dir, data_sliced, landscape, fmt): # XXX why is this necessary?? screwing up absolute values previous_JCP = FigureUtil.read_non_peg_landscape(base="../../FigData/") offset_s = np.mean([d.Separation[0] for d in data_sliced]) G_hao = landscape.G0_kcal_per_mol idx_zero = np.where(landscape.q_nm <= 100) G_hao = G_hao - landscape.G0_kcal_per_mol[0] G_JCP = previous_JCP.G0_kcal_per_mol - previous_JCP.G0_kcal_per_mol[0] + 50 offset_jcp_nm = min(previous_JCP.q_nm) landscape_offset_nm = min(landscape.q_nm) q_JCP_nm = previous_JCP.q_nm - offset_jcp_nm + 5 q_Hao_nm = landscape.q_nm - landscape_offset_nm fig = FigureUtil._fig_single(y=6) xlim, ylim = FigureUtil._limits(data_sliced) ax1 = plt.subplot(2, 1, 1) FigureUtil._plot_fec_list(data_sliced, **fmt) FigureUtil._plot_fmt(ax1, **fmt) ax2 = plt.subplot(2, 1, 2) plt.plot(q_Hao_nm, G_hao, label="Aligned, IWT") plt.plot(q_JCP_nm, G_JCP, 'r--', label="JCP landscape") FigureUtil._plot_fmt(ax2, ylabel="G (kcal/mol)", is_bottom=True, xlim=xlim, ylim=[None, None]) PlotUtilities.legend(ax=ax2, handlelength=2) ax2.set_xlim(fmt['xlim']) PlotUtilities.savefig(fig, plot_dir + "FigureSX_LandscapeComparison.png")
def _make_work_plot(fec_list,x_arr,works_kcal,gs,col,color,title): # get the interpolated work x_interp, mean_W, std_W = _mean_work(x_arr, works_kcal) # use Davids function shift_david_nm_plot = 10 L0_david = 11e-9 max_david = L0_david * 0.95 x_david = np.linspace(0,max_david,num=100) style_david = dict(color='b',linestyle='--',label="David") legend_kw = dict(handlelength=1.5,handletextpad=0.3,fontsize=6) david_F = _f_david(kbT=4.1e-21, L0=L0_david, Lp=0.4e-9, x=x_david) david_W = _single_work(x=x_david,f=david_F) x_david_plot = x_david * 1e9 - shift_david_nm_plot W_david_plot = david_W * kcal_per_mol_per_J() f_david_plot = david_F * 1e12 is_left = (col == 0) fmt_kw = dict(is_left=is_left) label_work = "$W$ (kcal/mol)" # interpolate each work onto a grid xlim, ylim, ylim_work = xlim_ylim() fudge_work = max(std_W) ax1 = plt.subplot(gs[0,col]) FigureUtil._plot_fec_list(fec_list,xlim,ylim) plt.plot(x_david_plot,f_david_plot,**style_david) if is_left: PlotUtilities.legend(**legend_kw) FigureUtil._plot_fmt(ax1, xlim, ylim,**fmt_kw) PlotUtilities.title(title,color=color) ax2 = plt.subplot(gs[1,col]) for x,w in zip(x_arr,works_kcal): plt.plot(x * 1e9,w,linewidth=0.75) FigureUtil._plot_fmt(ax2, xlim, ylim_work,ylabel=label_work,**fmt_kw) ax3 = plt.subplot(gs[2,col]) _plot_mean_works(x_interp, mean_W, std_W, color, title) style_lower_david = dict(**style_david) if (not is_left): style_lower_david['label'] = None plt.plot(x_david_plot,W_david_plot,'b--',zorder=5,**style_lower_david) PlotUtilities.legend(**legend_kw) FigureUtil._plot_fmt(ax3, xlim, ylim_work,is_bottom=True, ylabel=label_work,**fmt_kw)
def make_retinal_subplot(gs, energy_list_arr, shifts, skip_arrow=True, limit_plot=None): q_interp_nm = energy_list_arr[0].q_nm means = [e.G0_kcal_per_mol for e in energy_list_arr] # fit a second order polynomial and subtract from each point q_fit_nm_relative = 7 max_fit_idx = \ np.argmin(np.abs((q_interp_nm - q_interp_nm[0]) - q_fit_nm_relative)) fits = [] fit_pred_arr = [] for m in means: fit = np.polyfit(x=q_interp_nm[:max_fit_idx], y=m[:max_fit_idx], deg=2) fits.append(fit) fit_pred = np.polyval(fit, x=q_interp_nm) fit_pred_arr.append(fit_pred) stdevs = [e.G_err_kcal for e in energy_list_arr] ax1 = plt.subplot(gs[0]) common_error = dict(capsize=0) style_dicts = [ dict(color=FigureUtil.color_BR(), label=r"with retinal"), dict(color=FigureUtil.color_BO(), label=r"w/o retinal") ] markers = ['v', 'x'] deltas, deltas_std = [], [] delta_styles = [ dict(color=style_dicts[i]['color'], markersize=5, linestyle='None', marker=markers[i], **common_error) for i in range(len(energy_list_arr)) ] xlim = [None, 27] ylim = [-25, 450] q_arr = [] round_energy = -1 max_q_nm = max(q_interp_nm) # add the 'shifted' energies for i, (mean, stdev) in enumerate(zip(means[:limit_plot], stdevs[:limit_plot])): tmp_style = style_dicts[i] style_fit = dict(**tmp_style) style_fit['linestyle'] = '--' style_fit['label'] = None corrected = mean - fit_pred_arr[i] plt.plot(q_interp_nm, mean, **tmp_style) plt.fill_between(x=q_interp_nm, y1=mean - stdev, y2=mean + stdev, color=tmp_style['color'], linewidth=0, alpha=0.3) energy_error = np.mean(stdev) max_idx = -1 q_at_max_energy = q_interp_nm[max_idx] max_energy_mean = corrected[max_idx] # for the error, use the mean error over all interpolation max_energy_std = energy_error deltas.append(max_energy_mean) deltas_std.append(max_energy_std) q_arr.append(q_at_max_energy) plt.xlim(xlim) plt.ylim(ylim) PlotUtilities.lazyLabel("Extension (nm)", "$\mathbf{\Delta}G$ (kcal/mol)", "") leg = PlotUtilities.legend(loc='lower right') colors_leg = [s['color'] for s in style_dicts] PlotUtilities.color_legend_items(leg, colors=colors_leg[:limit_plot]) return ax1, means, stdevs