def preparationBatiOCS(urbanatlas_input, ucz_output, emprise_file, mask_file, enter_with_mask, image_file, mnh_file, built_files_list, hydrography_file, roads_files_list, rpg_file, indicators_method, ucz_method, dbms_choice, threshold_ndvi, threshold_ndvi_water, threshold_ndwi2, threshold_bi_bottom, threshold_bi_top, path_time_log, temp_directory, format_vector, extension_raster, extension_vector): print(bold + yellow + "Début de la préparation du bâti issu de la classif OCS." + endC) step = " Début de la préparation du bâti issu de la classif OCS : " timeLine(path_time_log, step) built_classif = temp_directory + os.sep + "bati_classif" + extension_raster built_polygonize = temp_directory + os.sep + "bati_polygonize" + extension_vector built_clean = temp_directory + os.sep + "bati_clean" + extension_vector built_simplify = temp_directory + os.sep + "bati_simplify" + extension_vector built_ready = temp_directory + os.sep + "bati" + extension_vector print(bold + cyan + " Extraction du bâti du fichier de classification '%s' :" % (image_file) + endC) os.system( "otbcli_BandMath -il %s -out %s uint8 -exp 'im1b1==11100 ? 10 : 1'" % (image_file, built_classif)) # Extraction du bâti de la classif print( bold + cyan + " Vectorisation du bâti (attention, cette étape peut être extrêmement longue !) :" + endC) os.system( "gdal_polygonize.py -mask %s %s -f 'ESRI Shapefile' %s built_classif id" % (built_classif, built_classif, built_polygonize)) # Vectorisation du bâti précédemment extrait print(bold + cyan + " Nettoyage du bâti :" + endC) cleanMiniAreaPolygons( built_polygonize, built_clean, 20, format_vector ) # Nettoyage du bâti vectorisé (élimination des petits polygones) - Surface de nettoyage par défaut : 20 print(bold + cyan + " Simplification du bâti :" + endC) simplifyVector( built_clean, built_simplify, 1, format_vector ) # Simplification du bâti vectorisé (suppression de l'effet "marches d'escalier" dû aux pixels) - Indice de lissage par défaut : 1 print(bold + cyan + " Découpage du bâti final à l'emprise du fichier '%s' :" % (emprise_file) + endC) os.system( "ogr2ogr -progress -f 'ESRI Shapefile' %s %s -clipsrc %s" % (built_ready, built_simplify, emprise_file) ) # Découpage du fichier nettoyé et simplifié à l'emprise érodée de la zone d'étude step = " Fin de la préparation du bâti issu de la classif OCS : " timeLine(path_time_log, step) print(bold + yellow + "Fin de la préparation du bâti issu de la classif OCS." + endC) print("\n") return
def addDataBaseExo(image_input, image_classif_add_output, class_file_dico, class_buffer_dico, class_sql_dico, path_time_log, format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True, simplifie_param=10.0): # Mise à jour du Log starting_event = "addDataBaseExo() : Add data base exogene to classification starting : " timeLine(path_time_log, starting_event) # Print if debug >= 3: print(bold + green + "Variables dans la fonction" + endC) print(cyan + "addDataBaseExo() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "addDataBaseExo() : " + endC + "image_classif_add_output : " + str(image_classif_add_output) + endC) print(cyan + "addDataBaseExo() : " + endC + "class_file_dico : " + str(class_file_dico) + endC) print(cyan + "addDataBaseExo() : " + endC + "class_buffer_dico : " + str(class_buffer_dico) + endC) print(cyan + "addDataBaseExo() : " + endC + "class_sql_dico : " + str(class_sql_dico) + endC) print(cyan + "addDataBaseExo() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "addDataBaseExo() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "addDataBaseExo() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "addDataBaseExo() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "addDataBaseExo() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "addDataBaseExo() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes FOLDER_MASK_TEMP = 'Mask_' FOLDER_FILTERING_TEMP = 'Filt_' FOLDER_CUTTING_TEMP = 'Cut_' FOLDER_BUFF_TEMP = 'Buff_' SUFFIX_MASK_CRUDE = '_mcrude' SUFFIX_MASK = '_mask' SUFFIX_FUSION = '_info' SUFFIX_VECTOR_FILTER = "_filt" SUFFIX_VECTOR_CUT = '_decoup' SUFFIX_VECTOR_BUFF = '_buff' CODAGE = "uint16" # ETAPE 1 : NETTOYER LES DONNEES EXISTANTES if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "NETTOYAGE ESPACE DE TRAVAIL..." + endC) # Nom de base de l'image image_name = os.path.splitext(os.path.basename(image_input))[0] # Nettoyage d'anciennes données résultat # Si le fichier résultat existent deja et que overwrite n'est pas activé check = os.path.isfile(image_classif_add_output) if check and not overwrite: print(bold + yellow + "addDataBaseExo() : " + endC + image_classif_add_output + " has already added bd exo and will not be added again." + endC) else: if check: try: removeFile(image_classif_add_output ) # Tentative de suppression du fichier except Exception: pass # Si le fichier ne peut pas être supprimé, on suppose qu'il n'existe pas et on passe à la suite # Définition des répertoires temporaires repertory_output = os.path.dirname(image_classif_add_output) repertory_mask_temp = repertory_output + os.sep + FOLDER_MASK_TEMP + image_name repertory_samples_filtering_temp = repertory_output + os.sep + FOLDER_FILTERING_TEMP + image_name repertory_samples_cutting_temp = repertory_output + os.sep + FOLDER_CUTTING_TEMP + image_name repertory_samples_buff_temp = repertory_output + os.sep + FOLDER_BUFF_TEMP + image_name if debug >= 4: print(repertory_mask_temp) print(repertory_samples_filtering_temp) print(repertory_samples_cutting_temp) print(repertory_samples_buff_temp) # Creer les répertoires temporaire si ils n'existent pas if not os.path.isdir(repertory_output): os.makedirs(repertory_output) if not os.path.isdir(repertory_mask_temp): os.makedirs(repertory_mask_temp) if not os.path.isdir(repertory_samples_filtering_temp): os.makedirs(repertory_samples_filtering_temp) if not os.path.isdir(repertory_samples_cutting_temp): os.makedirs(repertory_samples_cutting_temp) if not os.path.isdir(repertory_samples_buff_temp): os.makedirs(repertory_samples_buff_temp) # Nettoyer les répertoires temporaire si ils ne sont pas vide cleanTempData(repertory_mask_temp) cleanTempData(repertory_samples_filtering_temp) cleanTempData(repertory_samples_cutting_temp) cleanTempData(repertory_samples_buff_temp) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "... FIN NETTOYAGE" + endC) # ETAPE 2 : CREER UN SHAPE DE DECOUPE if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "SHAPE DE DECOUPE..." + endC) # 2.1 : Création des masques délimitant l'emprise de la zone par image vector_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK_CRUDE + extension_vector createVectorMask(image_input, vector_mask) # 2.2 : Simplification du masque global vector_simple_mask_cut = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK + extension_vector simplifyVector(vector_mask, vector_simple_mask_cut, simplifie_param, format_vector) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "...FIN SHAPE DE DECOUPEE" + endC) # ETAPE 3 : DECOUPER BUFFERISER LES VECTEURS ET FUSIONNER if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "MISE EN PLACE DES TAMPONS..." + endC) image_combined_list = [] # Parcours du dictionnaire associant les macroclasses aux noms de fichiers for macroclass_label in class_file_dico: vector_fusion_list = [] for index_info in range(len(class_file_dico[macroclass_label])): input_vector = class_file_dico[macroclass_label][index_info] vector_name = os.path.splitext( os.path.basename(input_vector))[0] output_vector_filtered = repertory_samples_filtering_temp + os.sep + vector_name + SUFFIX_VECTOR_FILTER + extension_vector output_vector_cut = repertory_samples_cutting_temp + os.sep + vector_name + SUFFIX_VECTOR_CUT + extension_vector output_vector_buff = repertory_samples_buff_temp + os.sep + vector_name + SUFFIX_VECTOR_BUFF + extension_vector sql_expression = class_sql_dico[macroclass_label][index_info] buffer_str = class_buffer_dico[macroclass_label][index_info] buff = 0.0 col_name_buf = "" try: buff = float(buffer_str) except: col_name_buf = buffer_str print( cyan + "addDataBaseExo() : " + bold + green + "Pas de valeur buffer mais un nom de colonne pour les valeur à bufferiser : " + endC + col_name_buf) if os.path.isfile(input_vector): if debug >= 3: print(cyan + "addDataBaseExo() : " + endC + "input_vector : " + str(input_vector) + endC) print(cyan + "addDataBaseExo() : " + endC + "output_vector_filtered : " + str(output_vector_filtered) + endC) print(cyan + "addDataBaseExo() : " + endC + "output_vector_cut : " + str(output_vector_cut) + endC) print(cyan + "addDataBaseExo() : " + endC + "output_vector_buff : " + str(output_vector_buff) + endC) print(cyan + "addDataBaseExo() : " + endC + "buff : " + str(buff) + endC) print(cyan + "addDataBaseExo() : " + endC + "sql : " + str(sql_expression) + endC) # 3.0 : Recuperer les vecteurs d'entrée et filtree selon la requete sql par ogr2ogr if sql_expression != "": names_attribut_list = getAttributeNameList( input_vector, format_vector) column = "'" for name_attribut in names_attribut_list: column += name_attribut + ", " column = column[0:len(column) - 2] column += "'" ret = filterSelectDataVector(input_vector, output_vector_filtered, column, sql_expression, format_vector) if not ret: print( cyan + "addDataBaseExo() : " + bold + yellow + "Attention problème lors du filtrage des BD vecteurs l'expression SQL %s est incorrecte" % (sql_expression) + endC) output_vector_filtered = input_vector else: print(cyan + "addDataBaseExo() : " + bold + green + "Pas de filtrage sur le fichier du nom : " + endC + output_vector_filtered) output_vector_filtered = input_vector # 3.1 : Découper le vecteur selon l'empise de l'image d'entrée cutoutVectors(vector_simple_mask_cut, [output_vector_filtered], [output_vector_cut], format_vector) # 3.2 : Bufferiser lesvecteurs découpé avec la valeur défini dans le dico ou trouver dans la base du vecteur lui même si le nom de la colonne est passée dans le dico if os.path.isfile(output_vector_cut) and ( (buff != 0) or (col_name_buf != "")): bufferVector(output_vector_cut, output_vector_buff, buff, col_name_buf, 1.0, 10, format_vector) else: print(cyan + "addDataBaseExo() : " + bold + green + "Pas de buffer sur le fichier du nom : " + endC + output_vector_cut) output_vector_buff = output_vector_cut # 3.3 : Si un shape résulat existe l'ajouté à la liste de fusion if os.path.isfile(output_vector_buff): vector_fusion_list.append(output_vector_buff) if debug >= 3: print("file for fusion : " + output_vector_buff) else: print(bold + yellow + "pas de fichiers avec ce nom : " + endC + output_vector_buff) else: print(cyan + "addDataBaseExo() : " + bold + yellow + "Pas de fichier du nom : " + endC + input_vector) # 3.4 : Fusionner les shapes transformés d'une même classe, rasterization et labelisations des vecteurs # Si une liste de fichier shape existe if not vector_fusion_list: print(bold + yellow + "Pas de fusion sans donnee a fusionnee" + endC) else: # Rasterization et BandMath des fichiers shapes raster_list = [] for vector in vector_fusion_list: if debug >= 3: print(cyan + "addDataBaseExo() : " + endC + "Rasterization : " + vector + " label : " + macroclass_label) raster_output = os.path.splitext( vector)[0] + extension_raster # Rasterisation rasterizeBinaryVector(vector, image_input, raster_output, macroclass_label, CODAGE) raster_list.append(raster_output) if debug >= 3: print(cyan + "addDataBaseExo() : " + endC + "nombre d'images a combiner : " + str(len(raster_list))) # Liste les images raster combined and sample image_combined = repertory_output + os.sep + image_name + '_' + str( macroclass_label) + SUFFIX_FUSION + extension_raster image_combined_list.append(image_combined) # Fusion des images raster en une seule mergeListRaster(raster_list, image_combined, CODAGE) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "FIN DE L AFFECTATION DES TAMPONS" + endC) # ETAPE 4 : ASSEMBLAGE DE L'IMAGE CLASSEE ET DES BD EXOS if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "ASSEMBLAGE..." + endC) # Ajout de l'image de classification a la liste des image bd conbinées image_combined_list.append(image_input) # Fusion les images avec la classification mergeListRaster(image_combined_list, image_classif_add_output, CODAGE) if debug >= 2: print(cyan + "addDataBaseExo() : " + bold + green + "FIN" + endC) # ETAPE 5 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiaires if not save_results_intermediate: image_combined_list.remove(image_input) for to_delete in image_combined_list: removeFile(to_delete) # Suppression des repertoires temporaires deleteDir(repertory_mask_temp) deleteDir(repertory_samples_filtering_temp) deleteDir(repertory_samples_cutting_temp) deleteDir(repertory_samples_buff_temp) # Mise à jour du Log ending_event = "addDataBaseExo() : Add data base exogene to classification ending : " timeLine(path_time_log, ending_event) return
def polygonMerToTDC(input_im_ndvi_dico, output_dir, input_sea_points, fct_bin_mask_vect, simplif, input_cut_vector, buf_pos, buf_neg, no_data_value, path_time_log, epsg=2154, format_vector="ESRI Shapefile", extension_raster=".tif", extension_vector=".shp", save_results_intermediate=True, overwrite=True): # Mise à jour du Log starting_event = "PolygonMerToTDC() : Select PolygonMerToTDC starting : " timeLine(path_time_log,starting_event) # Affichage des paramètres if debug >= 3: print(bold + green + "Variables dans PolygonMerToTDC - Variables générales" + endC) print(cyan + "polygonMerToTDC() : " + endC + "input_im_ndvi_dico : " + str(input_im_ndvi_dico) + endC) print(cyan + "polygonMerToTDC() : " + endC + "output_dir : " + str(output_dir) + endC) print(cyan + "polygonMerToTDC() : " + endC + "input_sea_points : " + str(input_sea_points) + endC) print(cyan + "polygonMerToTDC() : " + endC + "fct_bin_mask_vect : " + str(fct_bin_mask_vect) + endC) print(cyan + "polygonMerToTDC() : " + endC + "simplif : " + str(simplif) + endC) print(cyan + "polygonMerToTDC() : " + endC + "input_cut_vector : " + str(input_cut_vector) + endC) print(cyan + "polygonMerToTDC() : " + endC + "buf_pos : " + str(buf_pos) + endC) print(cyan + "polygonMerToTDC() : " + endC + "buf_neg : " + str(buf_neg) + endC) print(cyan + "polygonMerToTDC() : " + endC + "no_data_value : " + str(no_data_value) + endC) print(cyan + "polygonMerToTDC() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "polygonMerToTDC() : " + endC + "epsg : " + str(epsg) + endC) print(cyan + "polygonMerToTDC() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "polygonMerToTDC() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "polygonMerToTDC() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "polygonMerToTDC() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "polygonMerToTDC() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes REP_TEMP_POLY_MER = "Temp_PolygonMerToTDC_" CODAGE_8B = "uint8" # Création du répertoire de sortie s'il n'existe pas déjà if not os.path.exists(output_dir): os.makedirs(output_dir) # Pour toutes les images à traiter for r in range(len(input_im_ndvi_dico.split())): # L'image à traiter input_image = input_im_ndvi_dico.split()[r].split(":")[0] image_name = os.path.splitext(os.path.basename(input_image))[0] # Création du répertoire temporaire de calcul repertory_temp = output_dir + os.sep + REP_TEMP_POLY_MER + image_name if not os.path.exists(repertory_temp): os.makedirs(repertory_temp) if not os.path.exists(input_image): print(cyan + "polygonMerToTDC() : " + bold + red + "L'image en entrée : " + input_image + " n'existe pas. Vérifiez le chemin !" + endC, file=sys.stderr) sys.exit(1) src_input_im = gdal.Open(input_image) if src_input_im is None: print(cyan + "polygonMerToTDC() : " + bold + red + "Impossible d'ouvrir l'image raster : " + input_image + endC, file=sys.stderr) sys.exit(1) try : srcband = src_input_im.GetRasterBand(2) except RuntimeError as err: print(cyan + "polygonMerToTDC() : " + bold + red + "Pas de bande 2 trouvée sur : " + input_image + endC, file=sys.stderr) e = "OS error: {0}".format(err) print(e, file=sys.stderr) sys.exit(1) # Traiter le cas où pas de NDVI derrière if ":" not in input_im_ndvi_dico.split()[r]: print(cyan + "polygonMerToTDC() : " + red + bold + "Aucun masque binaire vectorisé spécifié ! Nécessité d'au moins un par image." + endC, file=sys.stderr) sys.exit(1) # Parcours de toutes les images NDVI correspondant à chaque image for ndvi_mask_vect in input_im_ndvi_dico.split()[r].split(":")[1].split(","): if debug > 2 : print(cyan + "polygonMerToTDC() : " + endC + "Traitement de : " + ndvi_mask_vect) # Initialisation des noms des fichiers de sortie binary_mask_zeros = repertory_temp + os.sep + "b_mask_zeros_" + os.path.splitext(os.path.basename(input_image))[0] + extension_raster binary_mask_zeros_vector = "b_mask_zeros_vect_" + os.path.splitext(os.path.basename(input_image))[0] path_binary_mask_zeros_vector = repertory_temp + os.sep + binary_mask_zeros_vector + extension_vector true_values_buffneg = repertory_temp + os.sep + "true_values_buffneg_" + os.path.splitext(os.path.basename(input_image))[0] + extension_vector decoup_buffneg = repertory_temp + os.sep + "decoupe_buffneg_" + os.path.splitext(os.path.basename(input_cut_vector))[0] + extension_vector if fct_bin_mask_vect : threshold = os.path.splitext(os.path.basename(ndvi_mask_vect))[0].split("_")[-2] + "_" + os.path.splitext(os.path.basename(ndvi_mask_vect))[0].split("_")[-1] poly_mer_shp = repertory_temp + os.sep + "poly_mer_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector poly_mer_shp_dilat = repertory_temp + os.sep + "poly_mer_dilat_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector poly_mer_shp_ferm = repertory_temp + os.sep + "poly_mer_ferm_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector polyline_mer = repertory_temp + os.sep + "polyline_mer_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector polyline_tdc = repertory_temp + os.sep + "tdc_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector polyline_tdc_simplif = repertory_temp + os.sep + "tdcs_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector polyline_tdc_simplif_decoup = output_dir + os.sep + "tdcsd_" + os.path.splitext(os.path.basename(input_image))[0] + "_" + str(threshold) + extension_vector else : poly_mer_shp = repertory_temp + os.sep + "poly_mer_" + os.path.splitext(os.path.basename(ndvi_mask_vect))[0] + extension_vector poly_mer_shp_dilat = repertory_temp + os.sep + "poly_mer_dilat_" + os.path.splitext(os.path.basename(input_image))[0] + extension_vector poly_mer_shp_ferm = repertory_temp + os.sep + "poly_mer_ferm_" + os.path.splitext(os.path.basename(input_image))[0] + extension_vector polyline_mer = repertory_temp + os.sep + "polyline_mer_" + os.path.splitext(os.path.basename(ndvi_mask_vect))[0] + extension_vector polyline_tdc = repertory_temp + os.sep + "tdc_" + os.path.splitext(os.path.basename(ndvi_mask_vect))[0] + extension_vector polyline_tdc_simplif = repertory_temp + os.sep + "tdcs_" + os.path.splitext(os.path.basename(ndvi_mask_vect))[0] + extension_vector polyline_tdc_simplif_decoup = output_dir + os.sep + "tdcsd_" + os.path.splitext(os.path.basename(ndvi_mask_vect))[0] + extension_vector # Création shp poly_mer_shp contenant uniquement les polygones mer if os.path.exists(poly_mer_shp): removeVectorFile(poly_mer_shp) # Sélection des polygones qui sont de la mer, dans la liste poly_mer withinPolygons(input_sea_points, ndvi_mask_vect, poly_mer_shp, overwrite, format_vector) # Fermeture (dilatation - érosion) sur les polygones mer obtenus pour supprimer les petits trous dans les polygones (bateaux, ...) et rassembler les polygones proches bufferVector(poly_mer_shp, poly_mer_shp_dilat, buf_pos, "", 1.0, 10, format_vector) bufferVector(poly_mer_shp_dilat, poly_mer_shp_ferm, buf_neg, "", 1.0, 10, format_vector) # Création masque binaire pour séparer les no data des vraies valeurs no_data_ima = getNodataValueImage(input_image) if no_data_ima == None : no_data_ima = no_data_value createBinaryMaskMultiBand(input_image, binary_mask_zeros, no_data_ima, CODAGE_8B) # Vectorisation du masque binaire true data/false data -> polygone avec uniquement les vraies valeurs if os.path.exists(path_binary_mask_zeros_vector): removeVectorFile(path_binary_mask_zeros_vector) polygonizeRaster(binary_mask_zeros, path_binary_mask_zeros_vector, binary_mask_zeros_vector) # Buffer négatif sur ce polygone bufferVector(path_binary_mask_zeros_vector, true_values_buffneg, -2, "", 1.0, 10, format_vector) # Transformation des polygones de la couche poly_mer_shp_ferm en polyligne convertePolygon2Polylines(poly_mer_shp_ferm, polyline_mer, overwrite, format_vector) # Découpe du TDC polyline_mer avec le polygone négatif cutVectorAll(true_values_buffneg, polyline_mer, polyline_tdc, overwrite, format_vector) # Simplification du TDC simplifyVector(polyline_tdc, polyline_tdc_simplif, simplif, format_vector) # Buffer négatif autour de input_cut_vector bufferVector(input_cut_vector, decoup_buffneg, -1, "", 1.0, 10, format_vector) # Découpe du TDC polyline_mer avec le buffer négatif du polygone mer cutVectorAll(decoup_buffneg, polyline_tdc_simplif, polyline_tdc_simplif_decoup, overwrite, format_vector) tdc_final = polyline_tdc_simplif_decoup # Suppression du repertoire temporaire if not save_results_intermediate and os.path.exists(repertory_temp): shutil.rmtree(repertory_temp) # Mise à jour du Log ending_event = "PolygonMerToTDC() : Select PolygonMerToTDC ending: " timeLine(path_time_log,ending_event) return tdc_final
def createEmprise(input_dir, output_file, is_not_assembled, is_all_polygons_used, is_not_date, is_optimize_emprise, is_optimize_emprise_nodata, no_data_value, size_erode, path_time_log, separ_name="_", pos_date=1, nb_char_date=8, separ_date="", epsg=2154, format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, overwrite=True): # Affichage des paramètres if debug >= 3: print(bold + green + "Variables dans le createEmprise - Variables générales" + endC) print(cyan + "createEmprise() : " + endC + "input_dir : " + str(input_dir)) print(cyan + "createEmprise() : " + endC + "output_file : " + str(output_file)) print(cyan + "createEmprise() : " + endC + "is_not_assembled : " + str(is_not_assembled)) print(cyan + "createEmprise() : " + endC + "is_all_polygons_used : " + str(is_all_polygons_used)) print(cyan + "createEmprise() : " + endC + "is_not_date : " + str(is_not_date)) print(cyan + "createEmprise() : " + endC + "is_optimize_emprise : " + str(is_optimize_emprise)) print(cyan + "createEmprise() : " + endC + "is_optimize_emprise_nodata : " + str(is_optimize_emprise_nodata)) print(cyan + "createEmprise() : " + endC + "no_data_value : " + str(no_data_value)) print(cyan + "createEmprise() : " + endC + "size_erode : " + str(size_erode)) print(cyan + "createEmprise() : " + endC + "path_time_log : " + str(path_time_log)) print(cyan + "createEmprise() : " + endC + "separ_name : " + str(separ_name)) print(cyan + "createEmprise() : " + endC + "pos_date : " + str(pos_date)) print(cyan + "createEmprise() : " + endC + "nb_char_date : " + str(nb_char_date)) print(cyan + "createEmprise() : " + endC + "separ_date : " + str(separ_date)) print(cyan + "createEmprise() : " + endC + "epsg : " + str(epsg)) print(cyan + "createEmprise() : " + endC + "format_vector : " + str(format_vector)) print(cyan + "createEmprise() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "createEmprise() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "createEmprise() : " + endC + "save_results_intermediate : " + str(save_results_intermediate)) print(cyan + "createEmprise() : " + endC + "overwrite : " + str(overwrite)) # Constantes EXT_LIST_HDF5 = ['h5', 'H5', 'he5', 'HE5', 'hdf5', 'HDF5'] EXT_LIST = EXT_LIST_HDF5 + [ 'tif', 'TIF', 'tiff', 'TIFF', 'ecw', 'ECW', 'jp2', 'JP2', 'dim', 'DIM', 'asc', 'ASC' ] SUFFIX_DETAILLEE = "_detail" SUFFIX_MASK_ZERO = "_mask_zeros" SUFFIX_TMP = "_tmp" CODAGE_8B = "uint8" ATTR_NAME_ID = "Id" ATTR_NAME_NOMIMAGE = "NomImage" ATTR_NAME_DATEACQUI = "DateAcqui" ATTR_NAME_HEUREACQUI = "HeureAcqui" ATTR_NAME_REFDOSSIER = "RefDossier" # Variables points_list = [] name_image_list = [] name_rep_list = [] ref_dossier_list = [] date_list = [] heure_list = [] optimize_emprise_nodata_shape_list = [] polygons_attr_coord_dico = {} pos_date = pos_date - 1 repertory_output = os.path.dirname(output_file) file_name = os.path.splitext(os.path.basename(output_file))[0] extension = os.path.splitext(output_file)[1] file_vector_detail = repertory_output + os.sep + file_name + SUFFIX_DETAILLEE + extension # Si un fichier de sortie avec le même nom existe déjà, et si l'option ecrasement est à false, alors passe au masque suivant check = os.path.isfile(output_file) if check and not overwrite: print( bold + yellow + "createEmprise() : " + endC + "Le fichier vecteur d'emprise %s existe déjà : pas d'actualisation" % (output_file) + endC) # Si non, ou si la fonction ecrasement est désative, alors on le calcule else: if check: try: # Suppression de l'éventuel fichier existant removeVectorFile(output_file) removeVectorFile(file_vector_detail) except Exception: pass # Si le fichier ne peut pas être supprimé, on suppose qu'il n'existe pas et on passe à la suite # Récuperer tous les sous répertoires sub_rep_list = getSubRepRecursifList(input_dir) sub_rep_list.append(input_dir) # Parcours de chaque dossier image du dossier en entrée for repertory in sub_rep_list: if os.path.isdir(repertory): if debug >= 2: print(cyan + "createEmprises() : " + endC + bold + green + "Traitement de : " + endC + repertory) # Récupération des images du dossier en entrée imagettes_jp2_tif_ecw_list = [] imagettes_list = os.listdir(repertory) for elt1 in imagettes_list: path_image = repertory + os.sep + elt1 if (os.path.isfile(path_image)) and (len( elt1.rsplit('.', 1)) == 2) and (elt1.rsplit( '.', 1)[1] in EXT_LIST): if elt1.rsplit('.', 1)[1] in EXT_LIST_HDF5: elt1_new = os.path.splitext( elt1)[0] + extension_raster path_image_new = repertory + os.sep + elt1_new h5ToGtiff(path_image, path_image_new) imagettes_jp2_tif_ecw_list.append(elt1_new) else: imagettes_jp2_tif_ecw_list.append(elt1) # Pour le cas ou le repertoire contient des fichiers images if not imagettes_jp2_tif_ecw_list == []: # Cas ou chaque emprise d'image est un polygone if is_not_assembled or is_optimize_emprise or is_optimize_emprise_nodata: for imagette in imagettes_jp2_tif_ecw_list: # Récupération des emprises de l'image path_image = repertory + os.sep + imagette path_info_acquisition = repertory xmin, xmax, ymin, ymax = getEmpriseImage( path_image) coord_list = [ xmin, ymax, xmax, ymax, xmax, ymin, xmin, ymin, xmin, ymax ] # Saisie des données points_list.append(coord_list) # Récupération du nom de l'image pour la création des champs input_image_name = os.path.splitext( os.path.basename(path_image))[0] name_image_list.append(input_image_name) # Cas optimisation de l'emprise en elevant les nodata if is_optimize_emprise_nodata: path_info_acquisition = path_image optimize_emprise_nodata_shape = repertory_output + os.sep + input_image_name + extension_vector optimize_emprise_tmp1_shape = repertory_output + os.sep + input_image_name + SUFFIX_TMP + str( 1) + extension_vector optimize_emprise_tmp2_shape = repertory_output + os.sep + input_image_name + SUFFIX_TMP + str( 2) + extension_vector optimize_emprise_tmp3_shape = repertory_output + os.sep + input_image_name + SUFFIX_TMP + str( 3) + extension_vector optimize_emprise_tmp4_shape = repertory_output + os.sep + input_image_name + SUFFIX_TMP + str( 4) + extension_vector binary_mask_zeros_raster = repertory_output + os.sep + input_image_name + SUFFIX_MASK_ZERO + extension_raster optimize_emprise_nodata_shape_list.append( optimize_emprise_nodata_shape) # Création masque binaire pour séparer les no data des vraies valeurs no_data_value_img = getNodataValueImage( path_image) if no_data_value_img == None: no_data_value_img = no_data_value createBinaryMaskMultiBand( path_image, binary_mask_zeros_raster, no_data_value_img, CODAGE_8B) # Vectorisation du masque binaire true data/false data -> polygone avec uniquement les vraies valeurs if os.path.exists( optimize_emprise_nodata_shape): removeVectorFile( optimize_emprise_nodata_shape) polygonizeRaster(binary_mask_zeros_raster, optimize_emprise_tmp1_shape, input_image_name, ATTR_NAME_ID, format_vector) # Nettoyage des polygones parasites pour ne garder que le polygone pricipale si l'option "all" n'est pas demandée if not is_all_polygons_used: geometry_list = getGeomPolygons( optimize_emprise_tmp1_shape, None, None, format_vector) geometry_orded_dico = {} geometry_orded_list = [] for geometry in geometry_list: area = geometry.GetArea() geometry_orded_dico[area] = geometry geometry_orded_list.append(area) geometry_orded_list.sort() if len(geometry_orded_list) > 0: max_area = geometry_orded_list[ len(geometry_orded_list) - 1] geom_max = geometry_orded_dico[ max_area] attribute_dico = { ATTR_NAME_ID: ogr.OFTInteger } polygons_attr_geom_dico = {} polygons_attr_geom_dico[str(1)] = [ geom_max, { ATTR_NAME_ID: str(1) } ] createPolygonsFromGeometryList( attribute_dico, polygons_attr_geom_dico, optimize_emprise_tmp2_shape, epsg, format_vector) else: print( cyan + "createEmprise() : " + bold + yellow + " Attention!!! Fichier non traite (ne contient pas de polygone): " + optimize_emprise_tmp1_shape + endC) optimize_emprise_tmp2_shape = optimize_emprise_tmp1_shape else: optimize_emprise_tmp2_shape = optimize_emprise_tmp1_shape # Nettoyage des polygones simplification et supression des trous cleanRingVector(optimize_emprise_tmp2_shape, optimize_emprise_tmp3_shape, format_vector) simplifyVector(optimize_emprise_tmp3_shape, optimize_emprise_tmp4_shape, 2, format_vector) if size_erode != 0.0: bufferVector( optimize_emprise_tmp4_shape, optimize_emprise_nodata_shape, size_erode * -1, "", 1.0, 10, format_vector) else: copyVectorFile( optimize_emprise_tmp4_shape, optimize_emprise_nodata_shape, format_vector) # Nettoyage des fichier intermediaires if not save_results_intermediate: removeFile(binary_mask_zeros_raster) removeVectorFile( optimize_emprise_tmp1_shape) removeVectorFile( optimize_emprise_tmp2_shape) removeVectorFile( optimize_emprise_tmp3_shape) removeVectorFile( optimize_emprise_tmp4_shape) # Recuperation de la date et l'heure d'acquisition # Gestion de l'emprise optimisé nodata on utilise le nom de l'image pour la date d'acquisition sion c'est le nom du repertoire getDataToFiels( path_info_acquisition, is_not_date, is_optimize_emprise or is_optimize_emprise_nodata, separ_name, pos_date, nb_char_date, separ_date, points_list, ref_dossier_list, name_rep_list, date_list, heure_list) # Cas ou l'on prend l'emprise globale des images un seul plolygone correspondant a l'emprise globale else: # Récupération des emprises des images du dossier liste_x_l = [] liste_y_b = [] liste_x_r = [] liste_y_t = [] for imagette in imagettes_jp2_tif_ecw_list: path_image = repertory + os.sep + imagette xmin, xmax, ymin, ymax = getEmpriseImage( path_image) liste_x_l.append(xmin) liste_x_r.append(xmax) liste_y_b.append(ymin) liste_y_t.append(ymax) # Récupération des min et max de la liste des imagettes # Coin haut gauche xmin_l_t = str(min(liste_x_l)) # Coin bas gauche ymin_l_b = str(min(liste_y_b)) xmin_l_b = xmin_l_t # Coin bas doite xmax_r_b = str(max(liste_x_r)) # Coin haut droite ymax_r_t = str(max(liste_y_t)) xmax_r_t = xmax_r_b ymax_r_b = ymin_l_b ymin_l_t = ymax_r_t coord_list = [ xmin_l_t, ymin_l_t, xmin_l_b, ymin_l_b, xmax_r_b, ymax_r_b, xmax_r_t, ymax_r_t, xmin_l_t, ymin_l_t ] points_list.append(coord_list) # Récupération du nom du répertoire pour création des champs getDataToFiels(repertory, is_not_date, is_optimize_emprise, separ_name, pos_date, nb_char_date, separ_date, points_list, ref_dossier_list, name_rep_list, date_list, heure_list) # Préparation des attribute_dico et polygons_attr_coord_dico if is_not_assembled: attribute_dico = { ATTR_NAME_ID: ogr.OFTInteger, ATTR_NAME_NOMIMAGE: ogr.OFTString, ATTR_NAME_DATEACQUI: ogr.OFTDate, ATTR_NAME_HEUREACQUI: ogr.OFTString } for i in range(len(points_list)): polygons_attr_coord_dico[str(i)] = [ points_list[i], { ATTR_NAME_ID: i + 1, ATTR_NAME_NOMIMAGE: name_image_list[i], ATTR_NAME_DATEACQUI: date_list[i], ATTR_NAME_HEUREACQUI: heure_list[i] } ] else: attribute_dico = { ATTR_NAME_NOMIMAGE: ogr.OFTString, ATTR_NAME_REFDOSSIER: ogr.OFTString, ATTR_NAME_DATEACQUI: ogr.OFTDate, ATTR_NAME_HEUREACQUI: ogr.OFTString } for i in range(len(points_list)): polygons_attr_coord_dico[str(i)] = [ points_list[i], { ATTR_NAME_NOMIMAGE: name_rep_list[i], ATTR_NAME_REFDOSSIER: ref_dossier_list[i], ATTR_NAME_DATEACQUI: date_list[i], ATTR_NAME_HEUREACQUI: heure_list[i] } ] # Cas optimisation de l'emprise en elevant les nodata colum = "" if is_optimize_emprise_nodata: if is_not_assembled: file_vector = output_file else: file_vector = file_vector_detail # Fusion des polygones d'emprises images optimisées sans nodata polygons_attr_geom_dico = {} i = 0 for shape_file in optimize_emprise_nodata_shape_list: geom_list = getGeomPolygons(shape_file, ATTR_NAME_ID, 1, format_vector) if not is_all_polygons_used: if geom_list is not None and len(geom_list) > 0: geom = geom_list[0] polygons_attr_geom_dico[str(i)] = [ geom, polygons_attr_coord_dico[str(i)][1] ] else: j = 1 for geom in geom_list: polygons_attr_geom_dico[str(i + 1000000 * j)] = [ geom, polygons_attr_coord_dico[str(i)][1] ] j += 1 i += 1 createPolygonsFromGeometryList(attribute_dico, polygons_attr_geom_dico, file_vector, epsg, format_vector) # Suppression des fichiers intermediaires if not save_results_intermediate: for vector_to_del in optimize_emprise_nodata_shape_list: removeVectorFile(vector_to_del) else: # Utilisation de createPolygonsFromCoordList() if is_optimize_emprise: file_vector = file_vector_detail else: file_vector = output_file # Creation des polygones a partir de la liste des coordonnées des emprises createPolygonsFromCoordList(attribute_dico, polygons_attr_coord_dico, file_vector, epsg, format_vector) # Cas fusion des polygones pour avoir une emprise constituée d'un seul polygone if not is_not_assembled: if is_optimize_emprise or is_optimize_emprise_nodata or is_all_polygons_used: column_name = "" if is_all_polygons_used: column_name = ATTR_NAME_DATEACQUI elif is_optimize_emprise or is_optimize_emprise_nodata: column_name = ATTR_NAME_NOMIMAGE # Fusion des polygones if is_all_polygons_used and is_not_date: fusionNeighbourPolygonsBySameValue(file_vector, output_file, column_name, format_vector) #dissolveVector(file_vector, output_file, column_name, format_vector) else: if not geometries2multigeometries(file_vector, output_file, column_name, format_vector): copyVectorFile(file_vector, output_file, format_vector) # Suppression des fichiers intermediaires if not save_results_intermediate: removeVectorFile(file_vector_detail) return
def sobelToOuvrages(input_im_seuils_dico, output_dir, input_cut_vector, no_data_value, path_time_log, format_raster='GTiff', format_vector="ESRI Shapefile", extension_raster=".tif", extension_vector=".shp", save_results_intermediate=True, overwrite=True): # Constantes REPERTORY_TEMP = "temp_sobel" CODAGE_8B = "uint8" ID = "id" # Mise à jour du Log starting_event = "sobelToOuvrages() : Select Sobel to ouvrages starting : " timeLine(path_time_log,starting_event) # Création du répertoire de sortie s'il n'existe pas déjà if not os.path.exists(output_dir + os.sep + REPERTORY_TEMP): os.makedirs(output_dir + os.sep + REPERTORY_TEMP) # Affichage des paramètres if debug >= 3: print(bold + green + "Variables dans SobelToOuvrages - Variables générales" + endC) print(cyan + "sobelToOuvrages() : " + endC + "input_im_seuils_dico : " + str(input_im_seuils_dico) + endC) print(cyan + "sobelToOuvrages() : " + endC + "output_dir : " + str(output_dir) + endC) print(cyan + "sobelToOuvrages() : " + endC + "input_cut_vector : " + str(input_cut_vector) + endC) print(cyan + "sobelToOuvrages() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "sobelToOuvrages() : " + endC + "format_raster : " + str(format_raster) + endC) print(cyan + "sobelToOuvrages() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "sobelToOuvrages() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "sobelToOuvrages() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "sobelToOuvrages() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "sobelToOuvrages() : " + endC + "overwrite : " + str(overwrite) + endC) sobel_ouvrages_shp_list = [] for elt in input_im_seuils_dico.split(): raw_image = elt.split(":")[0] sobel_image = elt.split(":")[1].split(",")[0] for i in range(1,len(elt.split(":")[1].split(","))): seuil = elt.split(":")[1].split(",")[i] # Initialisation des noms des fichiers en sortie image_name = os.path.splitext(os.path.basename(raw_image))[0] sobel_binary_mask = output_dir + os.sep + REPERTORY_TEMP + os.sep + "bin_mask_sobel_" + image_name + "_" + str(seuil) + extension_raster sobel_binary_mask_vector_name = "bin_mask_vect_sobel_" + image_name + "_" + str(seuil) sobel_binary_mask_vector = output_dir + os.sep + REPERTORY_TEMP + os.sep + sobel_binary_mask_vector_name + extension_vector sobel_binary_mask_vector_cleaned = output_dir + os.sep + REPERTORY_TEMP + os.sep + "bin_mask_vect_sobel_cleaned_" + image_name + "_" + str(seuil) + extension_vector sobel_decoup = output_dir + os.sep + "sobel_decoup_" + image_name + "_" + str(seuil) + extension_vector binary_mask_zeros_name = "b_mask_zeros_vect_" + image_name binary_mask_zeros_raster = output_dir + os.sep + REPERTORY_TEMP + os.sep + "b_mask_zeros_" + image_name + extension_raster binary_mask_zeros_vector = output_dir + os.sep + REPERTORY_TEMP + os.sep + binary_mask_zeros_name + extension_vector binary_mask_zeros_vector_simpl = output_dir + os.sep + REPERTORY_TEMP + os.sep + "b_mask_zeros_vect_simpl_" + image_name + extension_vector true_values_buffneg = output_dir + os.sep + REPERTORY_TEMP + os.sep + "true_values_buffneg_" + image_name + extension_vector ouvrages_decoup_final = output_dir + os.sep + "ouvrages_sobel_" + image_name + "_" + str(seuil) + extension_vector # Création du masque binaire createBinaryMask(sobel_image, sobel_binary_mask, float(seuil), True) # Découpe du masque binaire par le shapefile de découpe en entrée cutImageByVector(input_cut_vector, sobel_binary_mask, sobel_decoup, None, None, no_data_value, 0, format_raster, format_vector) # Vectorisation du masque binaire Sobel découpé polygonizeRaster(sobel_decoup, sobel_binary_mask_vector, sobel_binary_mask_vector_name) # Création masque binaire pour séparer les no data des vraies valeurs nodata_value = getNodataValueImage(raw_image) if no_data_value == None : no_data_value = 0 createBinaryMaskMultiBand(raw_image, binary_mask_zeros_raster, no_data_value, CODAGE_8B) # Vectorisation du masque binaire true data/false data -> polygone avec uniquement les vraies valeurs if os.path.exists(binary_mask_zeros_vector): removeVectorFile(binary_mask_zeros_vector, format_vector) # Polygonisation polygonizeRaster(binary_mask_zeros_raster, binary_mask_zeros_vector, binary_mask_zeros_name, ID, format_vector) # Simplification du masque obtenu simplifyVector(binary_mask_zeros_vector, binary_mask_zeros_vector_simpl, 2, format_vector) # Buffer négatif sur ce polygone bufferVector(binary_mask_zeros_vector_simpl, true_values_buffneg, -2, "", 1.0, 10, format_vector) cleanMiniAreaPolygons(sobel_binary_mask_vector, sobel_binary_mask_vector_cleaned, 15, ID, format_vector) # Découpe par le buffer négatif autour des true data cutVectorAll(true_values_buffneg, sobel_binary_mask_vector_cleaned, ouvrages_decoup_final, overwrite, format_vector) sobel_ouvrages_shp_list.append(ouvrages_decoup_final) return sobel_ouvrages_shp_list
def createDifference(image_ortho_input, image_mns_input, image_mnt_input, bd_vector_input_list, zone_buffer_dico, departments_list, image_difference_output, vector_difference_output, fileld_bd_raster, simplifie_param, threshold_ndvi, threshold_difference, filter_difference_0, filter_difference_1, path_time_log, format_vector='ESRI Shapefile', extension_raster=".tif", extension_vector=".shp", save_results_intermediate=False, channel_order=['Red', 'Green', 'Blue', 'NIR'], overwrite=True): # Mise à jour du Log starting_event = "createDifference() : create macro samples starting : " timeLine(path_time_log, starting_event) # constantes CODAGE = "float" FOLDER_MASK_TEMP = 'Mask_' FOLDER_CUTTING_TEMP = 'Cut_' FOLDER_BUFF_TEMP = 'Buff_' FOLDER_RESULT_TEMP = 'Tmp_' SUFFIX_MASK_CRUDE = '_mcrude' SUFFIX_MASK = '_mask' SUFFIX_FILTERED = '_filtered' SUFFIX_VECTOR_CUT = '_decoup' SUFFIX_VECTOR_BUFF = '_buff' SUFFIX_NEW_MNS = '_new_mns' SUFFIX_DIFF_MNS = '_diff_mns' SUFFIX_NDVI = '_ndvi' # print if debug >= 3: print(bold + green + "Variables dans la fonction" + endC) print(cyan + "createDifference() : " + endC + "image_ortho_input : " + str(image_ortho_input) + endC) print(cyan + "createDifference() : " + endC + "image_mns_input : " + str(image_mns_input) + endC) print(cyan + "createDifference() : " + endC + "image_mnt_input : " + str(image_mnt_input) + endC) print(cyan + "createDifference() : " + endC + "bd_vector_input_list : " + str(bd_vector_input_list) + endC) print(cyan + "createDifference() : " + endC + "zone_buffer_dico : " + str(zone_buffer_dico) + endC) print(cyan + "createDifference() : " + endC + "departments_list : " + str(departments_list) + endC) print(cyan + "createDifference() : " + endC + "image_difference_output : " + str(image_difference_output) + endC) print(cyan + "createDifference() : " + endC + "vector_difference_output : " + str(vector_difference_output) + endC) print(cyan + "createDifference() : " + endC + "fileld_bd_raster : " + str(fileld_bd_raster) + endC) print(cyan + "createDifference() : " + endC + "simplifie_param : " + str(simplifie_param) + endC) print(cyan + "createDifference() : " + endC + "threshold_ndvi : " + str(threshold_ndvi) + endC) print(cyan + "createDifference() : " + endC + "threshold_difference : " + str(threshold_difference) + endC) print(cyan + "createDifference() : " + endC + "filter_difference_0 : " + str(filter_difference_0) + endC) print(cyan + "createDifference() : " + endC + "filter_difference_1 : " + str(filter_difference_1) + endC) print(cyan + "createDifference() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "createDifference() : " + endC + "channel_order : " + str(channel_order) + endC) print(cyan + "createDifference() : " + endC + "format_vector : " + str(format_vector) + endC) print(cyan + "createDifference() : " + endC + "extension_raster : " + str(extension_raster) + endC) print(cyan + "createDifference() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "createDifference() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "createDifference() : " + endC + "overwrite : " + str(overwrite) + endC) # ETAPE 1 : NETTOYER LES DONNEES EXISTANTES print(cyan + "createDifference() : " + bold + green + "NETTOYAGE ESPACE DE TRAVAIL..." + endC) # Nom de base de l'image image_name = os.path.splitext(os.path.basename(image_ortho_input))[0] # Test si le fichier résultat différence existe déjà et si il doit être écrasés check = os.path.isfile(vector_difference_output) if check and not overwrite: # Si le fichier difference existe deja et que overwrite n'est pas activé print(cyan + "createDifference() : " + bold + yellow + "File difference " + vector_difference_output + " already exists and will not be created again." + endC) else: if check: try: removeFile(vector_difference_output) except Exception: pass # si le fichier n'existe pas, il ne peut pas être supprimé : cette étape est ignorée # Définition des répertoires temporaires repertory_output = os.path.dirname(vector_difference_output) repertory_output_temp = repertory_output + os.sep + FOLDER_RESULT_TEMP + image_name repertory_mask_temp = repertory_output + os.sep + FOLDER_MASK_TEMP + image_name repertory_samples_cutting_temp = repertory_output + os.sep + FOLDER_CUTTING_TEMP + image_name repertory_samples_buff_temp = repertory_output + os.sep + FOLDER_BUFF_TEMP + image_name print(repertory_output_temp) print(repertory_mask_temp) print(repertory_samples_cutting_temp) print(repertory_samples_buff_temp) # Création des répertoires temporaire qui n'existent pas if not os.path.isdir(repertory_output_temp): os.makedirs(repertory_output_temp) if not os.path.isdir(repertory_mask_temp): os.makedirs(repertory_mask_temp) if not os.path.isdir(repertory_samples_cutting_temp): os.makedirs(repertory_samples_cutting_temp) if not os.path.isdir(repertory_samples_buff_temp): os.makedirs(repertory_samples_buff_temp) # Nettoyage des répertoires temporaire qui ne sont pas vide cleanTempData(repertory_mask_temp) cleanTempData(repertory_samples_cutting_temp) cleanTempData(repertory_samples_buff_temp) cleanTempData(repertory_output_temp) BD_topo_layers_list = [] #zone = zone_buffer_dico.keys()[0] zone = list(zone_buffer_dico)[0] # Creation liste des couches des bd exogenes utilisées for layers_buffer in zone_buffer_dico[zone]: BD_topo_layers_list.append(layers_buffer[0]) print(cyan + "createDifference() : " + bold + green + "... FIN NETTOYAGE" + endC) # ETAPE 2 : DECOUPER LES VECTEURS print(cyan + "createDifference() : " + bold + green + "DECOUPAGE ECHANTILLONS..." + endC) # 2.1 : Création du masque délimitant l'emprise de la zone par image vector_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK_CRUDE + extension_vector createVectorMask(image_ortho_input, vector_mask) # 2.2 : Simplification du masque vector_simple_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK + extension_vector simplifyVector(vector_mask, vector_simple_mask, simplifie_param, format_vector) # 2.3 : Découpage des vecteurs copiés en local avec le masque vector_output_list = [] for vector_input in bd_vector_input_list: vector_name = os.path.splitext(os.path.basename(vector_input))[0] extension = os.path.splitext(os.path.basename(vector_input))[1] vector_output = repertory_samples_cutting_temp + os.sep + vector_name + SUFFIX_VECTOR_CUT + extension vector_output_list.append(vector_output) cutoutVectors(vector_simple_mask, bd_vector_input_list, vector_output_list, format_vector) print(cyan + "createDifference() : " + bold + green + "...FIN DECOUPAGE" + endC) # ETAPE 3 : BUFFERISER LES VECTEURS print(cyan + "createDifference() : " + bold + green + "MISE EN PLACE DES TAMPONS..." + endC) # Parcours du dictionnaire associant la zone aux noms de fichiers et aux tampons associés for elem_buff in zone_buffer_dico[zone]: # Parcours des départements for dpt in departments_list: input_shape = repertory_samples_cutting_temp + os.sep + elem_buff[ 0] + "_" + dpt + SUFFIX_VECTOR_CUT + extension_vector output_shape = repertory_samples_buff_temp + os.sep + elem_buff[ 0] + "_" + dpt + SUFFIX_VECTOR_BUFF + extension_vector buff = elem_buff[1] if os.path.isfile(input_shape): if debug >= 3: print(cyan + "createDifference() : " + endC + "input_shape : " + str(input_shape) + endC) print(cyan + "createDifference() : " + endC + "output_shape : " + str(output_shape) + endC) print(cyan + "createDifference() : " + endC + "buff : " + str(buff) + endC) bufferVector(input_shape, output_shape, buff, "", 1.0, 10, format_vector) else: print(cyan + "createDifference() : " + bold + yellow + "Pas de fichier du nom : " + endC + input_shape) print(cyan + "createDifference() : " + bold + green + "FIN DE L AFFECTATION DES TAMPONS" + endC) # ETAPE 4 : FUSION DES SHAPES DE LA BD TOPO print(cyan + "createDifference() : " + bold + green + "FUSION DATA BD..." + endC) shape_buff_list = [] # Parcours du dictionnaire associant la zone au nom du fichier for elem_buff in zone_buffer_dico[zone]: # Parcours des départements for dpt in departments_list: shape_file = repertory_samples_buff_temp + os.sep + elem_buff[ 0] + "_" + dpt + SUFFIX_VECTOR_BUFF + extension_vector if os.path.isfile(shape_file): shape_buff_list.append(shape_file) print("file for fusion : " + shape_file) else: print(bold + yellow + "pas de fichiers avec ce nom : " + endC + shape_file) # si une liste de fichier shape existe if not shape_buff_list: print(bold + yellow + "Pas de fusion sans donnee a fusionnee" + endC) else: # Fusion des fichiers shape image_zone_shape = repertory_output_temp + os.sep + image_name + '_' + zone + extension_vector fusionVectors(shape_buff_list, image_zone_shape) print("File BD : " + image_zone_shape) print(cyan + "createDifference() : " + bold + green + "FIN DE LA FUSION" + endC) # ETAPE 5 : RASTERISER LE FICHIER SHAPE DE ZONE BD print(cyan + "createDifference() : " + bold + green + "RASTERIZATION DE LA FUSION..." + endC) image_zone_raster = repertory_output_temp + os.sep + image_name + '_' + zone + extension_raster rasterizeVector(image_zone_shape, image_zone_raster, image_ortho_input, fileld_bd_raster, codage=CODAGE) print(cyan + "createDifference() : " + bold + green + "FIN DE LA RASTERIZATION" + endC) # ETAPE 6 : CREER UN NOUVEAU MMS ISSU DU MNT + DATA BD_TOPO print(cyan + "createDifference() : " + bold + green + "CREATION NOUVEAU MNS..." + endC) image_new_mns_output = repertory_output_temp + os.sep + image_name + SUFFIX_NEW_MNS + extension_raster createMNS(image_ortho_input, image_mnt_input, image_zone_raster, image_new_mns_output) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION MNS" + endC) # ETAPE 7 : CREER D'UN MASQUE SUR LES ZONES VEGETALES print(cyan + "createDifference() : " + bold + green + "CREATION DU NDVI..." + endC) image_ndvi_output = repertory_output_temp + os.sep + image_name + SUFFIX_NDVI + extension_raster createNDVI(image_ortho_input, image_ndvi_output, channel_order) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DU NDVI" + endC) print(cyan + "createDifference() : " + bold + green + "CREATION DU MASQUE NDVI..." + endC) image_ndvi_mask_output = repertory_output_temp + os.sep + image_name + SUFFIX_NDVI + SUFFIX_MASK + extension_raster createBinaryMask(image_ndvi_output, image_ndvi_mask_output, threshold_ndvi, False) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DU MASQUE NDVI" + endC) # ETAPE 8 : CREER UN FICHIER DE DIFFERENCE DES MNS AVEC MASQUAGE DES ZONES VEGETALES print(cyan + "createDifference() : " + bold + green + "CREATION DIFFERENCE MNS..." + endC) #image_diff_mns_output = repertory_output + os.sep + image_name + SUFFIX_DIFF_MNS + extension_raster image_diff_mns_output = image_difference_output createDifferenceFile(image_mns_input, image_new_mns_output, image_ndvi_mask_output, image_diff_mns_output) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DE LA DIFFERENCE MNS" + endC) print(cyan + "createDifference() : " + bold + green + "CREATION DU MASQUE DE DIFFERENCE..." + endC) image_diff_mns_mask_output = repertory_output_temp + os.sep + image_name + SUFFIX_DIFF_MNS + SUFFIX_MASK + extension_raster createBinaryMask(image_diff_mns_output, image_diff_mns_mask_output, threshold_difference, True) print(cyan + "createDifference() : " + bold + green + "FIN DE LA CREATION DU MASQUE DE DIFFERENCE" + endC) print(cyan + "createDifference() : " + bold + green + "FILTRAGE DU MASQUE DE DIFFERENCE..." + endC) image_diff_mns_filtered_output = repertory_output_temp + os.sep + image_name + SUFFIX_DIFF_MNS + SUFFIX_FILTERED + extension_raster filterBinaryRaster(image_diff_mns_mask_output, image_diff_mns_filtered_output, filter_difference_0, filter_difference_1) print(cyan + "createDifference() : " + bold + green + "FIN DU FILTRAGE DU MASQUE DE DIFFERENCE" + endC) # ETAPE 9 : RASTERISER LE FICHIER DE DIFFERENCE DES MNS print(cyan + "createDifference() : " + bold + green + "VECTORISATION DU RASTER DE DIFFERENCE..." + endC) vector_diff_mns_filtered_output = repertory_output_temp + os.sep + image_name + SUFFIX_DIFF_MNS + SUFFIX_FILTERED + extension_vector polygonizeRaster(image_diff_mns_filtered_output, vector_diff_mns_filtered_output, image_name, field_name="DN") print(cyan + "createDifference() : " + bold + green + "FIN DE VECTORISATION DU RASTER DE DIFFERENCE" + endC) print(cyan + "createDifference() : " + bold + green + "SIMPLIFICATION VECTEUR DE DIFFERENCE..." + endC) simplifyVector(vector_diff_mns_filtered_output, vector_difference_output, simplifie_param, format_vector) print(cyan + "createDifference() : " + bold + green + "FIN DE SIMPLIFICATION DI VECTEUR DE DIFFERENCE" + endC) # ETAPE 10 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES if not save_results_intermediate: # Supression des .geom dans le dossier for to_delete in glob.glob(repertory_mask_temp + os.sep + "*.geom"): removeFile(to_delete) # Suppression des repertoires temporaires deleteDir(repertory_mask_temp) deleteDir(repertory_samples_cutting_temp) deleteDir(repertory_samples_buff_temp) deleteDir(repertory_output_temp) # Mise à jour du Log ending_event = "createDifference() : create macro samples ending : " timeLine(path_time_log, ending_event) return
def createMacroSamples(image_input, vector_to_cut_input, vector_sample_output, raster_sample_output, bd_vector_input_list, bd_buff_list, sql_expression_list, path_time_log, macro_sample_name="", simplify_vector_param=10.0, format_vector='ESRI Shapefile', extension_vector=".shp", save_results_intermediate=False, overwrite=True) : # Mise à jour du Log starting_event = "createMacroSamples() : create macro samples starting : " timeLine(path_time_log,starting_event) if debug >= 3: print(bold + green + "createMacroSamples() : Variables dans la fonction" + endC) print(cyan + "createMacroSamples() : " + endC + "image_input : " + str(image_input) + endC) print(cyan + "createMacroSamples() : " + endC + "vector_to_cut_input : " + str(vector_to_cut_input) + endC) print(cyan + "createMacroSamples() : " + endC + "vector_sample_output : " + str(vector_sample_output) + endC) print(cyan + "createMacroSamples() : " + endC + "raster_sample_output : " + str(raster_sample_output) + endC) print(cyan + "createMacroSamples() : " + endC + "bd_vector_input_list : " + str(bd_vector_input_list) + endC) print(cyan + "createMacroSamples() : " + endC + "bd_buff_list : " + str(bd_buff_list) + endC) print(cyan + "createMacroSamples() : " + endC + "sql_expression_list : " + str(sql_expression_list) + endC) print(cyan + "createMacroSamples() : " + endC + "path_time_log : " + str(path_time_log) + endC) print(cyan + "createMacroSamples() : " + endC + "macro_sample_name : " + str(macro_sample_name) + endC) print(cyan + "createMacroSamples() : " + endC + "simplify_vector_param : " + str(simplify_vector_param) + endC) print(cyan + "createMacroSamples() : " + endC + "format_vector : " + str(format_vector)) print(cyan + "createMacroSamples() : " + endC + "extension_vector : " + str(extension_vector) + endC) print(cyan + "createMacroSamples() : " + endC + "save_results_intermediate : " + str(save_results_intermediate) + endC) print(cyan + "createMacroSamples() : " + endC + "overwrite : " + str(overwrite) + endC) # Constantes FOLDER_MASK_TEMP = "Mask_" FOLDER_CUTTING_TEMP = "Cut_" FOLDER_FILTERING_TEMP = "Filter_" FOLDER_BUFF_TEMP = "Buff_" SUFFIX_MASK_CRUDE = "_crude" SUFFIX_MASK = "_mask" SUFFIX_VECTOR_CUT = "_cut" SUFFIX_VECTOR_FILTER = "_filt" SUFFIX_VECTOR_BUFF = "_buff" CODAGE = "uint8" # ETAPE 1 : NETTOYER LES DONNEES EXISTANTES print(cyan + "createMacroSamples() : " + bold + green + "Nettoyage de l'espace de travail..." + endC) # Nom du repertoire de calcul repertory_macrosamples_output = os.path.dirname(vector_sample_output) # Test si le vecteur echantillon existe déjà et si il doit être écrasés check = os.path.isfile(vector_sample_output) or os.path.isfile(raster_sample_output) if check and not overwrite: # Si les fichiers echantillons existent deja et que overwrite n'est pas activé print(bold + yellow + "File sample : " + vector_sample_output + " already exists and will not be created again." + endC) else : if check: try: removeVectorFile(vector_sample_output) removeFile(raster_sample_output) except Exception: pass # si le fichier n'existe pas, il ne peut pas être supprimé : cette étape est ignorée # Définition des répertoires temporaires repertory_mask_temp = repertory_macrosamples_output + os.sep + FOLDER_MASK_TEMP + macro_sample_name repertory_samples_cutting_temp = repertory_macrosamples_output + os.sep + FOLDER_CUTTING_TEMP + macro_sample_name repertory_samples_filtering_temp = repertory_macrosamples_output + os.sep + FOLDER_FILTERING_TEMP + macro_sample_name repertory_samples_buff_temp = repertory_macrosamples_output + os.sep + FOLDER_BUFF_TEMP + macro_sample_name if debug >= 4: print(cyan + "createMacroSamples() : " + endC + "Création du répertoire : " + str(repertory_mask_temp)) print(cyan + "createMacroSamples() : " + endC + "Création du répertoire : " + str(repertory_samples_cutting_temp)) print(cyan + "createMacroSamples() : " + endC + "Création du répertoire : " + str(repertory_samples_buff_temp)) # Création des répertoires temporaire qui n'existent pas if not os.path.isdir(repertory_macrosamples_output): os.makedirs(repertory_macrosamples_output) if not os.path.isdir(repertory_mask_temp): os.makedirs(repertory_mask_temp) if not os.path.isdir(repertory_samples_cutting_temp): os.makedirs(repertory_samples_cutting_temp) if not os.path.isdir(repertory_samples_filtering_temp): os.makedirs(repertory_samples_filtering_temp) if not os.path.isdir(repertory_samples_buff_temp): os.makedirs(repertory_samples_buff_temp) # Nettoyage des répertoires temporaire qui ne sont pas vide cleanTempData(repertory_mask_temp) cleanTempData(repertory_samples_cutting_temp) cleanTempData(repertory_samples_filtering_temp) cleanTempData(repertory_samples_buff_temp) print(cyan + "createMacroSamples() : " + bold + green + "... fin du nettoyage" + endC) # ETAPE 2 : DECOUPAGE DES VECTEURS print(cyan + "createMacroSamples() : " + bold + green + "Decoupage des echantillons ..." + endC) if vector_to_cut_input == None : # 2.1 : Création du masque délimitant l'emprise de la zone par image image_name = os.path.splitext(os.path.basename(image_input))[0] vector_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK_CRUDE + extension_vector createVectorMask(image_input, vector_mask) # 2.2 : Simplification du masque vector_simple_mask = repertory_mask_temp + os.sep + image_name + SUFFIX_MASK + extension_vector simplifyVector(vector_mask, vector_simple_mask, simplify_vector_param, format_vector) else : vector_simple_mask = vector_to_cut_input # 2.3 : Découpage des vecteurs de bd exogenes avec le masque vectors_cut_list = [] for vector_input in bd_vector_input_list : vector_name = os.path.splitext(os.path.basename(vector_input))[0] vector_cut = repertory_samples_cutting_temp + os.sep + vector_name + SUFFIX_VECTOR_CUT + extension_vector vectors_cut_list.append(vector_cut) cutoutVectors(vector_simple_mask, bd_vector_input_list, vectors_cut_list, format_vector) print(cyan + "createMacroSamples() : " + bold + green + "... fin du decoupage" + endC) # ETAPE 3 : FILTRAGE DES VECTEURS print(cyan + "createMacroSamples() : " + bold + green + "Filtrage des echantillons ..." + endC) vectors_filtered_list = [] if sql_expression_list != [] : for idx_vector in range (len(bd_vector_input_list)): vector_name = os.path.splitext(os.path.basename(bd_vector_input_list[idx_vector]))[0] vector_cut = vectors_cut_list[idx_vector] if idx_vector < len(sql_expression_list) : sql_expression = sql_expression_list[idx_vector] else : sql_expression = "" vector_filtered = repertory_samples_filtering_temp + os.sep + vector_name + SUFFIX_VECTOR_FILTER + extension_vector vectors_filtered_list.append(vector_filtered) # Filtrage par ogr2ogr if sql_expression != "": names_attribut_list = getAttributeNameList(vector_cut, format_vector) column = "'" for name_attribut in names_attribut_list : column += name_attribut + ", " column = column[0:len(column)-2] column += "'" ret = filterSelectDataVector(vector_cut, vector_filtered, column, sql_expression, format_vector) if not ret : print(cyan + "createMacroSamples() : " + bold + yellow + "Attention problème lors du filtrage des BD vecteurs l'expression SQL %s est incorrecte" %(sql_expression) + endC) copyVectorFile(vector_cut, vector_filtered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de filtrage sur le fichier du nom : " + endC + vector_filtered) copyVectorFile(vector_cut, vector_filtered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de filtrage demandé" + endC) for idx_vector in range (len(bd_vector_input_list)): vector_cut = vectors_cut_list[idx_vector] vectors_filtered_list.append(vector_cut) print(cyan + "createMacroSamples() : " + bold + green + "... fin du filtrage" + endC) # ETAPE 4 : BUFFERISATION DES VECTEURS print(cyan + "createMacroSamples() : " + bold + green + "Mise en place des tampons..." + endC) vectors_buffered_list = [] if bd_buff_list != [] : # Parcours des vecteurs d'entrée for idx_vector in range (len(bd_vector_input_list)): vector_name = os.path.splitext(os.path.basename(bd_vector_input_list[idx_vector]))[0] buff = bd_buff_list[idx_vector] vector_filtered = vectors_filtered_list[idx_vector] vector_buffered = repertory_samples_buff_temp + os.sep + vector_name + SUFFIX_VECTOR_BUFF + extension_vector if buff != 0: if os.path.isfile(vector_filtered): if debug >= 3: print(cyan + "createMacroSamples() : " + endC + "vector_filtered : " + str(vector_filtered) + endC) print(cyan + "createMacroSamples() : " + endC + "vector_buffered : " + str(vector_buffered) + endC) print(cyan + "createMacroSamples() : " + endC + "buff : " + str(buff) + endC) bufferVector(vector_filtered, vector_buffered, buff, "", 1.0, 10, format_vector) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de fichier du nom : " + endC + vector_filtered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de tampon sur le fichier du nom : " + endC + vector_filtered) copyVectorFile(vector_filtered, vector_buffered) vectors_buffered_list.append(vector_buffered) else : print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de tampon demandé" + endC) for idx_vector in range (len(bd_vector_input_list)): vector_filtered = vectors_filtered_list[idx_vector] vectors_buffered_list.append(vector_filtered) print(cyan + "createMacroSamples() : " + bold + green + "... fin de la mise en place des tampons" + endC) # ETAPE 5 : FUSION DES SHAPES print(cyan + "createMacroSamples() : " + bold + green + "Fusion par macroclasse ..." + endC) # si une liste de fichier shape à fusionner existe if not vectors_buffered_list: print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de fusion sans donnee à fusionner" + endC) # s'il n'y a qu'un fichier shape en entrée elif len(vectors_buffered_list) == 1: print(cyan + "createMacroSamples() : " + bold + yellow + "Pas de fusion pour une seule donnee à fusionner" + endC) copyVectorFile(vectors_buffered_list[0], vector_sample_output) else : # Fusion des fichiers shape vectors_buffered_controled_list = [] for vector_buffered in vectors_buffered_list : if os.path.isfile(vector_buffered) and (getGeometryType(vector_buffered, format_vector) in ('POLYGON', 'MULTIPOLYGON')) and (getNumberFeature(vector_buffered, format_vector) > 0): vectors_buffered_controled_list.append(vector_buffered) else : print(cyan + "createMacroSamples() : " + bold + red + "Attention fichier bufferisé est vide il ne sera pas fusionné : " + endC + vector_buffered, file=sys.stderr) fusionVectors(vectors_buffered_controled_list, vector_sample_output, format_vector) print(cyan + "createMacroSamples() : " + bold + green + "... fin de la fusion" + endC) # ETAPE 6 : CREATION DU FICHIER RASTER RESULTAT SI DEMANDE # Creation d'un masque binaire if raster_sample_output != "" and image_input != "" : repertory_output = os.path.dirname(raster_sample_output) if not os.path.isdir(repertory_output): os.makedirs(repertory_output) rasterizeBinaryVector(vector_sample_output, image_input, raster_sample_output, 1, CODAGE) # ETAPE 7 : SUPPRESIONS FICHIERS INTERMEDIAIRES INUTILES # Suppression des données intermédiaires if not save_results_intermediate: # Supression du fichier de decoupe si celui ci a été créer if vector_simple_mask != vector_to_cut_input : if os.path.isfile(vector_simple_mask) : removeVectorFile(vector_simple_mask) # Suppression des repertoires temporaires deleteDir(repertory_mask_temp) deleteDir(repertory_samples_cutting_temp) deleteDir(repertory_samples_filtering_temp) deleteDir(repertory_samples_buff_temp) # Mise à jour du Log ending_event = "createMacroSamples() : create macro samples ending : " timeLine(path_time_log,ending_event) return