コード例 #1
0
def output_error(mydb, df0, target):

    cputime = tickwatch()

    df1 = df0[df0['check_town_geo'] == 0]
    df2 = df0[df0['reCntycode'] == 0]
    df3 = df0[df0['reTowncode'] == 0]
    df4 = df0[df0['reNumber'] == 0]
    frames = [df1, df2, df3, df4]

    result = pd.concat(frames)
    result = result[[
        'geom', 'origin_address', 'fid', 'cnty_code', 'town_code', 'lie',
        'lin', 'road', 'zone', 'lane', 'alley', 'number', 'floor', 'checklist'
    ]]
    name = target + '_modify'

    mydb.get_alias(name).write(result)
    cputime.tick('Write down dataframe' + name)
コード例 #2
0
def output_error():
    cputime = tickwatch()

    target = 'A10008_TRAN'

    mydb = manidb('G:/NCREE_GIS/2020_address/TGOS_NLSC_TWN22.sqlite')

    df0 = mydb.get_alias(target).read()

    cputime.tick('Calculation accomplished')

    ## export the outlier
    df1 = df0[df0['check_town_geo'] == 0]
    df2 = df0[df0['reCntycode'] == 0]
    df3 = df0[df0['reTowncode'] == 0]
    df4 = df0[df0['reNumber'] == 0]
    frames = [df1, df2, df3, df4]

    result = pd.concat(frames)
    mydb.get_alias(target + '_out').write(result)
    cputime.tick('Write down dataframe' + target)
コード例 #3
0
def function_x():

    cputime = tickwatch()
    from osgeo import ogr

    mydb = manidb('G:/NCREE_GIS/2020_address/TGOS_NLSC_TWN22.sqlite')
    cnty = mydb.get_alias('metadata_nsg_cnty').read()
    town = mydb.get_alias('metadata_nsg_town').read()

    for key, row in cnty[cnty['ncity'] == '10008'].iterrows():

        cntynum = row['ncity']
        cnty_wkt = row['cnty_wkt']

        target = 'A' + cntynum

        #resource
        tab0 = mydb.get_alias(target)
        #outcome
        tab1 = mydb.get_alias(target + '_TRAN')

        df0 = tab0.read()
        df0['point_wkt'] = df0[['TWD97_X', 'TWD97_Y'
                                ]].astype(str).apply(lambda x: ' '.join(x),
                                                     axis=1)
        df0['point_wkt'] = df0['point_wkt'].apply(lambda x: f'POINT({x})')
        if df0.empty:
            continue

        cputime.tick()
        #check county boundary
        df0 = check_addr_column(cnty_wkt, df0, 'point_wkt', fun4checkgeo)

        # check town boundary

        town_wkt = lookup_value(df0, 'town_code', town)
        ziparg = zip(town_wkt['town_wkt'].tolist(), df0['point_wkt'].tolist())

        #-----------------------------------------
        with Pool(8) as mpool:
            check_town = mpool.map(fun4checkgeo, ziparg)

        #-----------------------------------------
        #debug
        #check_town = []
        #for arg in ziparg:
        #    check_town.append(fun4checkgeo(arg))
        #------------------------------------
        df_check_town = pd.DataFrame.from_dict(check_town, orient='columns')
        df0['check_town_geo'] = df_check_town['checkgeo']

        cputime.tick('Geometry checked')

        #check county code
        df0 = check_addr_column(cntynum, df0, 'cnty_code', fun4cntycode)
        # check town code
        df0 = check_addr_column(cntynum, df0, 'town_code', fun4towncode)
        # check number
        df0 = check_addr_column(cntynum, df0, 'num', fun4number)
        df0 = trans_column(df0)

    mydb.get_alias(target + '_TRAN').write(df0)
コード例 #4
0
import re
import pandas
import csv, re, math, json
import numpy as np
import pandas as pd
from itertools import zip_longest
import Lily.ctao2.ctao2_database_alias
from Lily.ctao2.ctao2_database_alias import manidb, alias, tickwatch
from multiprocessing import Pool
import osgeo, ogr



if __name__ == '__console__' or __name__ == '__main__':
    cputime         = tickwatch()
    #%%----------read-------------
    origindb        = manidb( 'G:/NCREE_GIS/htax/nsg_bldg_taipei.sqlite' ) 
    country         = 'taipei'
    df_tax          = origindb.get_alias(f'htax_{country}').read()
    df_tgo          = origindb.get_alias(f'tgos_{country}_group').read()[['nsg_addr_key','geom']]#.head(200)
    cputime.tick('Dataframe read')
 
    #%%---------search-------------

    df_tax = df_tax.merge(df_tgo, left_on='nsg_addr_key', right_on='nsg_addr_key')

    #df_tgo          = df_tgo.set_index(['nsg_addr_key'])
    #tax_addr_list   = df_tax['nsg_addr_key'].tolist()
    #i = 0
    #for addr in tax_addr_list:
    #    i += 1; print(i)
コード例 #5
0
def function_x(mydb, cnty, town, cntynum, cnty_wkt):

    cputime = tickwatch()

    target = 'A' + cntynum

    #resource
    df0 = mydb.get_alias(target).read()
    cputime.tick('Data read')

    sdf = df0[[
        'fid', 'cnty_code', 'town_code', 'lie', 'lin', 'road', 'zone', 'lane',
        'alley', 'num'
    ]]
    df0.insert(0, 'origin_address',
               sdf.apply(lambda a: str(a.to_list()), axis=1))

    df0['point_wkt'] = df0[['TWD97_X', 'TWD97_Y'
                            ]].astype(str).apply(lambda x: ' '.join(x), axis=1)
    df0['point_wkt'] = df0['point_wkt'].apply(lambda x: f'POINT({x})')

    #if df0.empty :
    #    continue

    cputime.tick('Point_wkt added')

    #check county boundary
    df0 = check_addr_column(cnty_wkt, df0, 'point_wkt', fun4checkgeo)
    # check town boundary
    town_wkt = lookup_value(df0, 'town_code', town)
    ziparg = zip(town_wkt['town_wkt'].tolist(), df0['point_wkt'].tolist())

    #-----------------------------------------
    with Pool(8) as mpool:
        check_town = mpool.map(fun4checkgeo, ziparg)

    #-----------------------------------------
    #debug
    #check_town = []
    #for arg in ziparg:
    #    check_town.append(fun4checkgeo(arg))
    #------------------------------------
    df_check_town = pd.DataFrame.from_dict(check_town, orient='columns')
    df0['check_town_geo'] = df_check_town['check_town_geo']

    cputime.tick('Geometry checked')

    #check county code
    df0 = check_addr_column(cntynum, df0, 'cnty_code', fun4cntycode)
    # check town code
    df0 = check_addr_column(cntynum, df0, 'town_code', fun4towncode)
    # check number
    df0 = check_addr_column(cntynum, df0, 'num', fun4number)

    cputime.tick('Code and number checked')

    cdf = df0[[
        'check_town_geo', 'reCntycode', 'reTowncode', 'reNumber', 'reFloor'
    ]]
    df0['checklist'] = cdf.apply(lambda a: a.to_csv(), axis=1)

    df_tran = df0[[
        'geom', 'origin_address', 'fid', 'cnty_code', 'town_code', 'lie',
        'lin', 'road', 'zone', 'lane', 'alley', 'number', 'floor', 'checklist'
    ]]

    mydb.get_alias(target + '_TRAN').write(df_tran)
    cputime.tick('Write down dataframe' + target)

    # take out error data
    output_error(mydb, df0, target)