コード例 #1
0
ファイル: MARS.py プロジェクト: jayshonzs/ESL
def GCV(Model, Y, lmbda, beta):
    N = len(Y)
    X = model2matix(Model)
    X = np.transpose(np.array(X))
    Y_hat = leastsquare.predict(X, beta)
    rss = np.sum((Y-Y_hat)**2)
    denominator = (1-float(lmbda)/N)**2
    return rss/denominator
コード例 #2
0
ファイル: MARS.py プロジェクト: jayshonzs/ESL
def removed_rss(Model, index, Y):
    X = model2matix(Model)
    del X[index]
    X = np.transpose(np.array(X))
    if len(X) <= 1:
        return 999999999., None
    beta = leastsquare.ls(X, Y)
    Y_hat = leastsquare.predict(X, beta)
    rss = np.sum((Y-Y_hat)**2)
    return rss, beta
コード例 #3
0
ファイル: PointwiseVariance.py プロジェクト: jayshonzs/ESL
def draw_polynomial_pwv(train_in, train_out):
    p = 3
    X = polynomial(train_in)
    XT = np.transpose(X)
    
    beta = ls.ls(X, train_out)
    
    Yhat = ls.predict(X, beta)
    thegsq = ls.thegama2(Yhat, train_out, p)
    beta_var = np.linalg.inv(XT.dot(X))*thegsq
    
    print beta_var
    
    PWV = []
    for i in range(len(X)):
        PWV.append(np.transpose(X[i]).dot(beta_var).dot(X[i]))
        
    #print PWV
    
    plt.plot(train_in, PWV)
コード例 #4
0
ファイル: PointwiseVariance.py プロジェクト: jayshonzs/ESL
def draw_cubic_spline_pwv(train_in, train_out):
    p = 5
    X = cubic(train_in)
    #print X.shape
    XT = np.transpose(X)
    #print X
    
    beta = ls.ls(X, train_out)
    
    Yhat = ls.predict(X, beta)
    thegsq = ls.thegama2(Yhat, train_out, p)
    beta_var = np.linalg.inv(XT.dot(X))*thegsq
    
    print beta_var
    
    PWV = []
    for i in range(len(X)):
        PWV.append(np.transpose(X[i]).dot(beta_var).dot(X[i]))
        
    #print PWV
    
    plt.plot(train_in, PWV)
コード例 #5
0
ファイル: PointwiseVariance.py プロジェクト: jayshonzs/ESL
def draw_natural_spline_pwv(train_in, train_out):
    p = 5
    knots = np.arange(0.1, 0.9, 0.16).tolist()
    knots.append(0.9)
    X = nscookdata(train_in, 6, knots)
    #print H
    #print H.shape
    XT = np.transpose(X)
    
    beta = ls.ls(X, train_out)
    
    Yhat = ls.predict(X, beta)
    thegsq = ls.thegama2(Yhat, train_out, p)
    beta_var = np.linalg.inv(XT.dot(X))*thegsq
    
    print beta_var
    
    PWV = []
    for i in range(len(X)):
        PWV.append(np.transpose(X[i]).dot(beta_var).dot(X[i]))
        
    #print PWV
    
    plt.plot(train_in, PWV)