def get_global_entropy(glmm_par): info_mu = glmm_par['mu']['info'].get() info_beta = glmm_par['beta']['info'].get() tau_shape = glmm_par['tau']['shape'].get() tau_rate = glmm_par['tau']['rate'].get() return \ ef.univariate_normal_entropy(info_mu) + \ ef.univariate_normal_entropy(info_beta) + \ ef.gamma_entropy(tau_shape, tau_rate)
def test_gamma_entropy(self): shape = 3.0 rate = 2.4 gamma_dist = sp.stats.gamma(a=shape, scale=1 / rate) self.assertAlmostEqual(gamma_dist.entropy(), ef.gamma_entropy(shape, rate))
def entropy(self): return ef.gamma_entropy( shape=self['shape'].get(), rate=self['rate'].get())